
http://www.IXsystems.com

http://www.IXsystems.com

http://www.IXsystems.com

11/20104

CONTENTS Contents

www.bsdmag.org 5

Zbigniew Puchciński
Editor in Chief

zbigniew.puchcinski@software.com.pl

Editor in Chief:
Zbigniew Puchciński

 zbigniew.puchcinski@software.com.pl

Contributing:
Rob Somerville,Daniele Mazzocchio, Rashid N. Achilov, Joseba

Mendez, Laura Michaels
Lukas Holt, Caryn Holt, Laura Michaels

Special thanks to:
Marko Milenovic, Worth Bishop and Mike Bybee

Art Director:
Ireneusz Pogroszewski

DTP:
Ireneusz Pogroszewski

Senior Consultant/Publisher:
Paweł Marciniak pawel@software.com.pl

National Sales Manager:
Ewa Łozowicka

ewa.lozowicka@software.com.pl

Marketing Director:
Ewa Łozowicka

ewa.lozowicka@software.com.pl

Executive Ad Consultant:
Karolina Lesińska

karolina.lesinska@bsdmag.org

Advertising Sales:
Zbigniew Puchciński

zbigniew.puchcinski@software.com.pl

Publisher :
Software Press Sp. z o.o. SK

ul. Bokserska 1, 02-682 Warszawa
Poland

worldwide publishing
tel: 1 917 338 36 31
www.bsdmag.org

Software Press Sp z o.o. SK is looking for partners from all over
the world. If you are interested in cooperation with us, please

contact us via e-mail: editors@bsdmag.org

All trade marks presented in the magazine were used only for
informative purposes. All rights to trade marks presented in the

magazine are reserved by the companies which own them.

The editors use automatic DTP system

Mathematical formulas created by Design Science MathType™.

Dear Readers!
Some of you might have been concerned about our
magazine, but I wish to assure everyone that we are
still in the game, and staying in it for good.

In this month’s issue we start with second part of
Drupal article, then �nd lots of practical advice
regarding fx. backing up a laptop, or upgrading
FreeBSD with less effort. In main topic Ivan
„Rambius” Ivanov will present basics of WebDAV to
us.

I hope you will �nd this issue to be both interesting
and helpful. And as always – if you have any
comments or inputs, or you think you could
contribute to our magazine, please mail us.

I would also like to take this opportunity to wish
you all a merry christmas and happy new year. And
many presents of course. :)

Thank you!

11/20104

CONTENTS Contents

www.bsdmag.org 5

Authenticating NAT with authpf
Nicolas Greneche

NAT (Network Address Translation) is a way to (hide) several
hosts behind a gateway. It operates on IP packets (layer 3)
by rewriting source address of each one. It should be noticed
that another mechanism called PAT (Port Address Translation)
operates on TCP/UDP ports (layer 4).

Xmodmapon the way to writing
hieroglyphs quickly
Juraj Sipos

This article is about how to make your own Xmodmap map – a
definition for a keyboard layout in Linux/Unix. Presented is a
sample Xmodmap keyboard map with four keyboard layouts
that users can toggle with by Caps Lock: 1) Standard English
keyboard; 2) IAST keyboard layout for transliteration of Sanskrit;
3) a layout to be defined by users; 4) keyboard layout for
Devanagari.

FreeBSD Binary Upgrade
Sławomir Wojtczak (Vermaden)

After We install FreeBSD system, we have fresh packages and
up to date base system, but as new RELEASE appears its good
to update to get new features and bugfixes.

Introduction to WebDAV
Ivan „Rambius” Ivanov

WebDAV is an extension of the HTTP protocol that performs
remote Web content magagement, thus turning the Web into
writable media.

Managing software with NetBSD’s
pkgsrc packaging system
Eric Schnoebelen

pkgsrc is NetBSD’s package management system. But it
supports far more than just NetBSD. At last count, over 11
distinct operating systems were supported by pkgsrc.

Get Started
Drupal on FreeBSD – part 2
Rob Somerville

In the previous article in this series, we looked at installing the
Drupal Content Management System. We are now going to look
at configuration, templates, modules and adding content.

An Absolute Beginner’s Guide To Using
The Command Line Interface In Bsd
Sufyan Bin Uzayr

Life exists beyond Linux. There are other Open Source
operating systems such as BSD and OpenSolaris. Introducing a
Linux user to BSD is no big deal, considering the fact that most
BSD versions now employ either KDE or GNOME. Read on as
we bring explore the BSD command line.

How To’s
Backup your laptop from anywhere to
your home server with openvpn, rsync
and ssh
Matias Surdi

In this article I will explain how to setup a very simple backup
system based on standard unix tools and two shell scripts to
backup your laptop from anywhere if you have an internet
connection available.

06

22

12

16 24

28

30

44

11/2010 6

GET STARTED Drupal on FreeBSD – Part 2

www.bsdmag.org 7

Post install configuration
Log in to your website using the password supplied in
the initial install and complete the CAPTCHA question if
required. You will be presented with the administration
page (see Figure 1 and 2). Visit Home>Administer>Status
reports and see if any issues need fixing. In our example,
Cron maintenance tasks, Image import, ImageMagick and
APC need attention (Figure 3).

To �x cron
SSH onto the box and su to root, install wget and add a
crontab to pull cron.php every hour:

 ssh 192.168.0.117

 su

 pkg_add -r wget

 crontab -e

Then add the following line (press i in the vi editor to add
a line, Esc : wq! to save and exit):

15 * * * * /usr/local/bin/wget --quiet -O – http://

localhost/cron.php

This will run the Drupal cron.php script at 15 minutes
past every hour.

To �x Image Import

 mkdir /usr/local/www/drupal6/sites/all/images

 chown www:www /usr/local/www/drupal6/sites/all/images

Then add sites/all/images to the import path field (Figure 4).

Drupal on FreeBSD
part 2
In the previous article in this series, we looked at installing the
Drupal Content Management System. We are now going to look
at configuration, templates, modules and adding content.

What you will learn…
• How to install and patch modules, add themes and edit content

in Drupal

What you should know…
• Basic BSD system admin skills

Figure 1. Login Figure 2. Initial Administrator page

11/2010 6

GET STARTED Drupal on FreeBSD – Part 2

www.bsdmag.org 7

 RewriteEngine on

 RewriteBase /

 RewriteCond %{REQUEST_FILENAME} !-f

 RewriteCond %{REQUEST_FILENAME} !-d

 RewriteRule ^(.*)$ index.php?q=$1 [L,QSA]

Set your timezone in php.ini, under the [DATE] section:

 [Date]

 ; Defines the default timezone used by the date functions

 ; http://php.net/date.timezone

 date.timezone = „Europe/London”

Restart apache:

 apachectl restart

Downloading and installing Modules and Themes

Installing/updating Modules
One of the major benefits of Drupal is the huge number
of community contributed modules and themes that are

To �x Imagemagick

 pkg_add -r fpc-imagemagick

 cp /usr/local/www/drupal6/sites/all/modules/image/

 image.imagemagick.inc /usr/local/

 www/drupal6/includes/

Select the image toolkit and change the path to /usr/
local/bin/convert, and save the configuration.

To �x APC (Alternative PHP Cache)

 pkg_add -r pecl-APC

 cp /usr/local/etc/php.ini-production /usr/local/etc/php.ini

 echo ‘apc.enabled=”1”’ >> /usr/local/etc/php.ini

 echo ‘apc.shm_size=”50”’ >> /usr/local/etc/php.ini

 apachectl restart

Some additional tuning
To enable clean URLs, add the following lines at the
end of the <directory> section of /usr/local/etc/apache22/
Includes/drupal.conf. This option makes Drupal emit clean
URLs (i.e. without ?q= in the URL).

Figure 3. Errors found when running status report

Figure 4. Adding the image import path

Figure 5. The Drupal �le structure

Figure 6. Taking the site off-line

11/2010 8

GET STARTED Drupal on FreeBSD – Part 2

www.bsdmag.org 9

available. While it is always advisable to check on the Drupal
site as to the quality and life cycle of a module or theme,
adding a theme or a module is just a matter of copying
the tarball to the relevant directory (modules or templates)
and extracting it. In this example we will update the Image
module in the sites/all modules directory (see Figure 5 for a
cut down overview of the Drupal file structure). Ensure you
run the update script after you update any modules.

Drupal can be configured to automatically email the site
admin when patches are required, visit Home>Administer
>Reports>Available updates. See Figures 12-14 for an
example of a Drupal installation that requires patching
and the results after the update script has been run.

First, visit Home>Administer>Site configuration>Site
maintenance and take the site offline (see Figure 6). In a
root shell, perform the following:

 cd /usr/local/www/drupal6/sites/all/modules/

 rm -fr image/

 wget http://ftp.drupal.org/files/projects/image-6.x-1.0.tar.gz

 tar -xvzf image-6.x-1.0.tar.gz

 chown -R www:www image

N.B: By deleting the directory, you may be deleting
additional libraries etc. This is particularly applicable
to editors e.g. CKEditor. Overwriting the directory with
the updated tarball may not be a good choice either,
as cruft and old configuration files may remain to cause
problems. If unsure, backup the directory to somewhere
off the main Drupal tree to prevent the update script from
failing which could prove fatal to your site.

Figure 7. A good status report

Figure 8. The site themed with Danland

Figure 9. Adding group permissions

Figure 10. Administration drop-down menu

11/2010 8

GET STARTED Drupal on FreeBSD – Part 2

www.bsdmag.org 9

Visit the Home>Administer>Status reports page, and you
will see that Drupal requests that you run the update script.
Follow the instructions (On production systems it would be
wise to backup the Drupal tree and the MySQL database).
Provided the crontab has run successfully, you should
be presented with no warnings or errors at the status
report page (Figure 7). Return the site to on-line mode via
Home>Administer>Site configuration>Site maintenance.

Be aware of module dependencies. For instance, if a
module required the fictitious module new_module but it was
not installed, you would need to proceed as follows:

 cd /usr/local/www/drupal6/sites/all/modules/

 wget http://ftp.drupal.org/files/projects/newmodule.tar.gz

 tar -xvzf newmodule.tar.gz

 chown -R www:www newmodule

Then enable the module as below.

Enabling and Con�guring Modules
With over 3,000 modules available, the scope is endless
for the web developer/webmaster to investigate and
implement. In the previous article, we installed a few of
the available modules from the FreeBSD ports collection.
A list of some the most popular modules are listed in
Table 2, and these will need to be configured from the
Home>Administer>Site building>Modules page. When
installed, most modules are disabled and you may have to
enable various permissions and paths etc. Details on how
to configure the editor follows in the next section. For the
moment, you may find it useful to enable the Administration
Menu and then save your changes which provides a drop-
down menu at the top of the browser window (Figure 11).

Create a table for print module

 mysql -udrupal -p\!1gH87i-LL34

 use drupal6;

Figure 11. Enabling clean URL’s

Figure 12. Module update [1/3]

Figure 13. Module update [2/3]

Figure 14. Module update [3/3]

11/2010 10

GET STARTED Drupal on FreeBSD – Part 2

www.bsdmag.org 11

CREATE TABLE print_node_conf (nid int(10) unsigned NOT NULL,

 link tinyint(3) unsigned NOT NULL default ‘1’, comments

tinyint(3) unsigned NOT NULL default ‘1’,

url_list tinyint(3) unsigned NOT NULL default ‘1’,

PRIMARY KEY (nid));

CREATE TABLE print_page_counter(path varchar(128) NOT NULL,

 totalcount bigint(20) unsigned NOT NULL default ‘0’, timestamp

int(10) unsigned NOT NULL default ‘0’, PRIMARY KEY (path));

exit;

Installing Themes
For this example, I will download and deploy the CSS and
XHTML compliant theme Danland which is released under
the GPL licence by Dantesoft in Indonesia. In a root shell:

 cd /usr/local/www/drupal6/sites/all/themes

 wget http://ftp.drupal.org/files/projects/danland-6.x-

2.1.tar.gz

 tar -xvzf danland-6.x-2.1.tar.gz

 chown -R www:www danland

Navigate to Home>Administer>Site building>Themes in
your browser and enable the Danland theme and set it
to default. It is always worthwhile to check that themes /
code etc. is compliant with W3C standards, and the front
page of the newly themes site passes with flying colours
(see Figure 7/8.)

Changing user permissions and roles
Drupal uses its own powerful permission system which
needs to be configured if users other than the administrator,
registered (authenticated) or non-registered (anonymous)
are to be allowed access to modules. This is especially
important in a corporate environment where there may
be content approvers other than those who actually edit
the content. Drupal also supports LDAP through various

Figure 15. Adding content. Full HTML should be used if you want to
add images

Figure 16. Front page with teaser

Figure 17. Front page opened up – note the printer friendly icon and
send to a friend

11/2010 10

GET STARTED Drupal on FreeBSD – Part 2

www.bsdmag.org 11

modules, but your mileage may vary. Unfortunately there
is no PAM support available that I am aware of at present.
Before we configure any further modules, we will set up
3 roles: Webmaster, Moderator and Editor. By configuring
these roles (and later assigning them to the appropriate
users at the time of account creation) we can fine tune the
exact permissions they have when signed on to the site.
For example we could allow the Webmaster to change
themes, approve comments and add PHP code to the
site, but only Moderators could approve comments.

Visit Administer/User management in your browser, add
the above roles and then edit permissions as appropriate.
To create a user, visit Home>Administer>Users>Add
users where you can add your new users to the relevant
group. See Figure 9 for permissions in action.

Note that as most modules are disabled for
unauthenticated users, you will have to explicitly enable
use by this class of user. For example, the printer friendly
page and send to a friend will only appear in the content
of the Administrator unless this module is enabled for
anonymous users.

Installing the editor
If you have not done so already, enable CKEditor and
IMCE in the modules section and save the configuration.

Now visit Home>Administer>Site configuration>CKEditor
and edit the advanced profile. Change the toolbar to
DrupalFull and the file browser type to IMCE and save
the changes.

If you would prefer to use a different editor, visit
the Home>Administer>Site building>Modules scroll
down to User Interface enable wysiwyg and save the
configuration. Click on Home>Administer>By module and
visit the wysiwyg module. Once enabled, this module will
allow you to use other editors (e.g. Yahoo YUI) as well as
CKEditor.

If you get the following error:

 warning: Parameter 1 to theme_wysiwyg_profile_overview()

 expected to be a reference,

 value given in /usr/local/www/drupal6/includes/

theme.inc on line 656.

please refer to the section Patching Drupal.

Adding content
Now that the editor and file uploads are in operation,
we can add content. By default, Drupal provides 3
default content types, Image, Page and Story. A story
is automatically promoted to the front page with an
automatic teaser. Navigate to Home>Create content and
create a Story, adding and uploading images via the editor
dialogue – ensure you use Full HTML otherwise your
images will not display. see Figures 15/17.

Patching Drupal
Occasionally, you may find you are advised to patch
Drupal. Drupal supports a wide number of versions of
PHP, but there seems to be an issue with wysiwyg under
PHP 5.3 with the FreeBSD port. To rectify this, we will
need to patch the module:

 pkg_add -r patch

 cd /usr/local/www/drupal6/sites/all/modules/wysiwyg/

 wget http://drupal.org/files/issues/wysiwyg-php5.3.patch

 patch -b .000 wysiwyg.admin.inc wysiwyg-php5.3.patch

 chown www:www wysiwyg.admin.inc

When the patch is tested, you can remove the .000 and
.patch file.

ROB SOMERVILLE
Rob Somerville has been passionately involved with technology
both as an amateur and professional since childhood.
A passionate convert to *BSD, he stubbornly refuses to shave
off his beard under any circumstances. Fortunately, his wife
understands him (she was working as a System/36 operator
when they �rst met). The technological passions of their
daughter and numerous pets are still to be revealed.

Table 1. Drupal resources

Templates and themes http://drupal.org/project/themes

Danetsoft http://www.danetsoft.com/
danland-drupal-theme

Drupal website http://drupal.org

W3C HTML validation service http://validator.w3.org/

Table 2. Enabled Drupal modules

* Denotes not in ports collection

"SEO" Checklist CCK (All modules) Path PHP �lter

Poll Pro�le Search Statistics

Trigger Advanced help CKEditor IMCE

Lightbox2 * Page Title Path
redirect

Pathauto

Token Printer-friendly
pages

Send by e-
mail

CAPTCHA *

Views (All
modules)

Administration
menu *

Syslog Tracker

Meta Tags (All
modules)

11/2010 12

GET STARTED An Absolute Beginner’s Guide To Using The Command Line Interface In BSD

www.bsdmag.org 13

A newcomer to BSD will probably find himself
served well by the KDE/GNOME desktop
environment that can run on BSD just as easily

as on Linux. But BSD isn’t just about the desktop;
indeed, more so than Linux, it’s aimed at the server
market, with far less attention paid to desktop users
than to system administrators who want a stable and
speedy platform for running their high performance
network services.

Even if you do not plan to use BSD for server purposes,
the best interaction you can generally have with a BSD
machine is through the textual command line. But for a
newbie to the world of Unix, accustomed to computers
as being launching points for web browsers and digital
movies and 3D video games, it’s a lot to swallow.

Fortunately, anyone whose experience with alternative
operating systems includes any time spent dabbling
in Linux can count himself fortunate if confronted by a
BSD machine. This is because, as you can expect from
any Unix, BSD works in much the same way that Linux
does, particularly to a brand new user who wants to know
what the basic commands are for getting around in the
command-line interface.

Getting Work Done!
In a graphical operating system, the first thing you
would do is double-click things on the desktop and

start navigating around through the folders that are
available. That impulse is no different in the command
line interface (CLI); its just that the tools and techniques
you use to do it are a bit different, and require you to
memorize a few short commands and their obscure
suffixes (flags or parameters) rather than learn a few
moves to use with your mouse. The first command, the
one that does the equivalent of showing you a window
with a list of the files in it, is the ls command, which
stands for list:

% ls

Birthday.mov

movies

shopping_list.txt

My DVD List.txt

Picture1.jpg

The textual output shown above consists of a line
for the command you type, printed in bold, following
the prompt set by your system (% in this case, but
many systems use different prompts customized
for their own users’ purposes). This is followed by
the output that appears after you press [Enter] or
[Return].

Suppose, though, that you wanted to get a little bit
more out of your file listing. File names are just text, after

An Absolute Beginner’s
Guide To Using The Command Line Interface In Bsd
Life exists beyond Linux. There are other Open Source operating
systems such as BSD and OpenSolaris. Introducing a Linux
user to BSD is no big deal, considering the fact that most BSD
versions now employ either KDE or GNOME. Read on as we
bring explore the BSD command line.

What you will learn…
• to open/modify/work around with �les using the Command Li-

ne, as well as perform most basic functions

What you should know…
• basic knowledge of UNIX terminology

11/2010 12

GET STARTED An Absolute Beginner’s Guide To Using The Command Line Interface In BSD

www.bsdmag.org 13

This would move me into my home directory.
To change to the parent directory:

% cd ..

Or to move two levels up the tree:

% cd ../..

Or to return to my home directory using the shortcut of
omitting the path parameter altogether:

% cd

Working With Files
Now that you know the basics of command-line navigation,
you can put it to use by moving some files around. The
first thing to do might be to create a text file. You can use
the built-in ee editor for this:

% ee test.txt

When you’ve typed some text, press [Escape] to bring
up the menu, then use the Up and Down arrows to select
Leave editor. Choose Save changes in the next screen,
and you’ll exit the editor having created a new file. You
can get a closer look at it now using the ls command in
another new way:

% ls -l test.txt

-rw-r--r-- 1 sufyan users 561 Aug 31 2010 test.txt

Here, the test.txt argument makes ls show only the
information on the specified file, and the -l flag makes it
print its output in long form, meaning to show information
on the file’s permissions, ownership, last-modification
date, and size (in bytes).

You can now move the file to some other location.
This is done using the mv command (many core Unix
commands, as you can see, are abbreviated to an almost
comical degree – but for hardcore users who use these
commands hundreds of times a day, the less typing they
can get away with, the better):

% mv test.txt essays

This moves the file into the essays subdirectory. Just as
with cd, you can also specify a destination such as the
parent directory:

% mv test.txt ..

all, and text is what a CLI has in spades. you ought to be
able to coax a little more meaning out of this listing. Well,
you’re in luck: this is a perfect opportunity to demonstrate
how parameters work.

% ls –F

Birthday.mov*

movies/

shopping_list.txt*

My DVD List.txt*

Picture1.jpg@

Adding the -F flag (after a space, don’t forget the
space!) modifies the output of ls by adding symbols
that indicate what kind of file they are. They’re not
application-based icons like the ones you might be
used to, distinguishing one file type from another;
rather, BSD distinguishes objects much more broadly,
by using a slash (/) to denote directories, the @ sign for
symbolic links (which you can think of as Unix versions
of shortcuts or aliases), and asterisks (*) for executable
files (programs). For example, in this sample output you
can tell that movies is a folder, Picture1.jpg is really an
alias for an image file somewhere else in the system,
and shopping_list.txt is an executable text file, which
you can launch like this:

% ./shopping_list.txt

The ./ prefix here tells the system that the specified file
is in the current directory, denoted by a single dot (the
parent directory is two dots, ..).

In BSD, as in Linux and every other CLI-driven Unix,
your command-line environment comes preloaded
with several paths to directories in the system where
executable programs might be found. These paths might
include /bin, /usr/sbin, /usr/local/bin, and a few others.
(The ls command, for example, lives in /bin).

Besides, most command line prompts display the current
location or the active directory. But if yours does not, you
can still find out your location using the pwd command (it
stands for present working directory):

% pwd

/home/test

This tells me that I am in the test subdirectory of my
home directory. I can move around using the cd (change
directory) command, like this:

 % cd /home/test2

11/2010 14

GET STARTED

www.bsdmag.org

Or, if the file you want to move is somewhere other than
your current directory, you can use a relative path to
refer to it:

% mv ../test.txt essays

Or an absolute path:

% mv /home/sufyan/test.txt essays

What happens if you move a file into a directory where
there’s already a file with the same name as the one
you’re moving? Well, if the file’s permissions allow
it, the old file gets overwritten, without so much as
a warning. This is one of the pitfalls – or, depending
on how you see it, the blessings – of an austere CLI
environment: it really knows how to get out of your
way and let you do your work (or shoot yourself in the
foot).

Indeed, the mv command has many potentially
destructive uses. One of the most commonly surprising
ones, to newcomers to Unix, is that the mv command is
what you use to rename files.

Rather than having a dedicated command for rename,
in Unix if you’re changing a file’s name, what you’re
really doing is moving the old file to a new name (which
makes sense if you think of names as being trivial little
identifiers that merely point to the really interesting stuff,
the data):

% mv test.txt my_essay.txt

There is, however, a totally separate command for
copying files: cp. This command works just like mv, except
that it duplicates the original file and leaves it where it is:

% cp test.txt my_essay.txt

Finally, deleting a file is done using the rm command,
which stands for remove:

% rm test.txt ?

Suppose you want to make a new directory to store this
file and others. You can do that with the mkdir (make
directory) command:

% mkdir essays/history ?

This command creates a subdirectory called history
inside the essays directory. As with most of the other

commands you’ve seen, the arguments can be bare
filenames (to refer to a target in the current directory),
absolute paths (beginning with the / directory and
specifying each subsequent step down the tree), or
relative paths.

Deleting a directory is a little trickier. The command for
deleting a directory is rmdir, or remove directory; but it only
works on a directory that’s empty:

% rmdir essays

rmdir: essays: Directory not empty

Now, you can go through the contents of your directory
and painstakingly delete every single file in it using the
rm command (or, for more convenience and more risk
of things going badly wrong, rm*, which matches all
filenames in the current directory); or, if you’re in a hurry
or just want to get things over with, you can use the rm -
rf command to delete a directory and everything inside it
all at once:

 % rm -rf essays

Note: Using rm –rf means you won’t get any warnings or
second chances this way (the -rf flag suppresses them);
and you’d better be sure that everything inside all the
subdirectories of the directory you’re deleting is really
safe to delete. Generally BSD has no Trash or Recycle
Bin equivalent (excluding certain versions).

Viewing Files
In a GUI, you can do just about anything with a click or
two of the mouse, be it viewing the contents of a text
document or a picture file by double-clicking on it.

BSD, however, does not have this facility built into
its architecture. While KDE and GNOME behave the
same way as they do on Linux when it comes to file
type associations and opener applications, in the CLI
environment you have to use other means to see inside
your files.

To show the contents of a plain text file, use the cat
command:

% cat my_essay.txt

 This is a test.

Now is the time for all good men to come to.

This is great for short files; but what is your file runs into
MB? There is a variety of other commands that let you
manage these larger files much more efficiently, such as
more:

11/2010 14

GET STARTED

www.bsdmag.org

% more /var/log/maillog ?

more is a program rather than a mere command, which
lets you move through the contents of a text file page
by page, using the space bar to move forward and
the W key to move back. Skip to the end by pressing
[Shift]+[>] or the beginning with [Shift]+[<]. You can
search for a string of characters by typing / followed by
the string, then pressing [Return] or [Enter]. Press [Q]
to quit.

Working within the textual shell, particularly through
a remote terminal connection (for example over SSH),
you’re really only going to be able to look at plain text
files; images, movies, and even text documents that are
stored in a binary format are going to be unviewable
unless you’re working within a graphical environment
like KDE.

However, if you are using the console application of
your GUI (such as KDE Konsole or GNOME Terminal,
you can use the xv program to view pictures:

% xv Picture1.jpg ?

Movies can be viewed using MPlayer:

% mplayer Birthday.mov ?

Documents can be opened using OpenOffice.org.
Indeed, if a program exists for Linux, chances are that
it can be compiled and installed on BSD as well, if there
isn’t a binary package for it already. And if there isn’t,
BSD’s Linux compatibility layer will allow you to run Linux
programs natively.

Well, that sums up the description of BSD’s command
line capabilities. As with any Unix based OS, the real
prowess of BSD lies in the CLI and thus, it is always useful
to be literate with the console.

 SUFYAN BIN UZAYR
Sufyan is a 19-year old freelance writer, graphic artist,
programmer and photographer based in India. He writes for
several print magazines as well as technology blogs. At present
he is speculating the future of graphic art on UNIX platforms. He
can be reached at http://www.sufyan.co.nr

mailto:editors@bsdmag.org

11/2010 16

HOW TO’S Backup your laptop

www.bsdmag.org 17

The system requires a remote server connected to
the internet with even a fixed public IP address
or a dynamic DNS service such as that provided

by DynDNS. Also, we assume you have a Unix based
operative system on your laptop.

Overview
Your laptop will connect automatically at startup to your home
server via OpenVPN so that you will have direct connection
with your backup server in a secure way.Backups are fired
from a script on your laptop, so you can opt to run them
manually or automatically via your laptop’s Cron service.
Once the client script is run any file changed since the last
backup will be sent to the server with rsync (with optional
compression, deletion of local deleted files, bandwidth
limitation, files/directories exclusion, etc). On the server side,
a script will run nightly and will rotate the backups so that you
always will have a snapshot of your laptop for every day of
the last month and the first backup of every month since you
started to use this system, so, let’s assume you have been
using this system for a year running daily backups, then you
will end up with 11 monthly backups (the first available of
every past month) plus the last 30 days backups, a total of
41 snapshots of your files. On the server, rotation is done
using hard links. This way, files that don’t change aren’t
copied with every rotation. Rsync takes care of creating a
new file on the current snapshot if the contents differ.

In this article I will setup my Macbook Pro (mlaptop)
to backup my home directory to my FreeBSD home
server (hellbox.example.com). My home server runs on
my home LAN (network 192.168.1.0/24) and connects
over my home adsl router to the internet. This router
is setup to keep updated my dynamic IP address with
a Dyndns domain (hellbox.example.com) and forwards
port 1194/udp to my home server at 192.168.1.3. Also I
have Tunnelblick (available at http://code.google.com/p/
tunnelblick/) installed on my laptop to manage OpenVPN
connections.

Preparation
Ensure you have already installed and configured SSH on
your home server and check that an updated version of
rsync is available on both systems (>3.0 is recommended).
In freebsd you can install rsync via the Ports system, it is
located at /usr/ports/net/rsync. In OSX you can get it via
Macports (sudo port install rsync). Also, if you don’t have
a local unix account (different from root) in your home
server, create it. We will use it to authenticate your vpn
client and ease the setup.

Part 1 – Setting up openvpn on my home server
Openvpn installation was covered on the October issue,
so we won’t focus on its installation but in its configuration
instead. Just install it via the Ports system (you can find

Backup your laptop
In this article I will explain how to setup a very simple
backup system based on standard unix tools and two shell
scripts to backup your laptop from anywhere if you have an
internet connection available.

from anywhere to your home server with openvpn, rsync and ssh

What you will learn…
• How to quickly setup a vpn with your laptop with PAM

authentication.
• How to setup a client script to securely send your laptop data to

a remote server.
• How to rotate backups on the server daily and monthly

optimizing disk usage on the server side.

What you should know…
• How to use the FreeBSD ports management system to install

openvpn.
• Basic SSH and rsync knowledge.

11/2010 16

HOW TO’S Backup your laptop

www.bsdmag.org 17

it in /usr/ports/security/openvpn20). Once installed, add the
following lines to your /etc/rc.conf:

openvpn_enable=”YES”

openvpn_configfile=”/usr/local/etc/openvpn/server.conf”

Create the openvpn configuration file /usr/local/etc/

openvpn/server.conf with the following content, read the
commends for optional or particular settings: see Listing
1. Now, before starting openvpn one last step is required:
Setup the server PKI certificates required by openvpn: see
Listing 2.

Copy these three generated files to /usr/local/etc/

openvpn/.

Now you should be able to start openvpn with:

/usr/local/etc/rc.d/openvpn start

Part 2 – Setting openvpn on the client
Copy the ca.crt to your laptop and create a new file named
backupsopenvpn.conf with the following contents:

client

port 1194

proto udp

dev tun

remote hellbox.example.com

ca ca.crt

auth-user-pass

comp-lzo

Now, you can test it by running openvpn with
backupsopenvpn.conf as the only argument or, in OSX,
by placing it in ~/Library/openvpn and running it throught
Tunnelblick GUI. You will be prompted for a username

Listing 1. Openvpn server con�guration �le

Uncomment the following line if you want the process to listen just on one network interface.

#local 192.168.1.3

port 1194

proto udp

dev tun

ca ca.crt

key hellbox.key

cert hellbox.crt

dh dh1024.pem

server 10.0.0.0 255.255.255.0

ifconfig-pool-persist ipp.txt

The following line makes my home network available to my laptop over the vpn

push "route 192.168.1.0 255.255.255.0"

user nobody

group nobody

persist-key

persist-tun

status openvpn-status.log

verb 3

The following 3 lines will allow us to authenticate with the vpn through a local

unix account on my home server – PKI for backup clients is not needed.

plugin /usr/local/lib/openvpn-auth-pam.so common-auth

client-cert-not-required

username-as-common-name

comp-lzo

link-mtu 1542

keepalive 10 60

Uncomment the following line if you already have another vpn on your laptop (I.e: Work vpn).

#mssfix 1400

11/2010 18

HOW TO’S Backup your laptop

www.bsdmag.org 19

Listing 2. Openvpn required certi�cates generation

openssl req -nodes -new -x509 -keyout ca.key -out ca.crt

openssl req -nodes -new -x509 -keyout ca.key -out

ca.crt

Generating a 1024 bit RSA private key

.....++++++

....................++++++

writing new private key to 'ca.key'

You are about to be asked to enter information that

will be incorporated

into your certificate request.

What you are about to enter is what is called a

Distinguished Name or a DN.

There are quite a few fields but you can leave some

blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:ES

State or Province Name (full name) [Some-State]:Madrid

Locality Name (eg, city) []:Madrid

Organization Name (eg, company) [Internet Widgits Pty

Ltd]:Example Corp.

Common Name (eg, YOUR name) []:hellbox

Email Address []:me@example.com

openssl req -nodes -new -keyout hellbox.key -out

hellbox.csr

Generating a 1024 bit RSA private key

....................++++++

..................++++++

writing new private key to 'hellbox.key'

You are about to be asked to enter information that

will be incorporated

into your certificate request.

What you are about to enter is what is called a

Distinguished Name or a DN.

There are quite a few fields but you can leave some

blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:ES

State or Province Name (full name) [Some-State]:Madrid

Locality Name (eg, city) []:Madrid

Organization Name (eg, company) [Internet Widgits Pty

Ltd]:Example Corp

Organizational Unit Name (eg, section) []:IT

Common Name (eg, YOUR name) []:hellbox

Email Address []:me@example.com

Please enter the following 'extra' attributes

to be sent with your certificate request

A challenge password []:

An optional company name []:

openssl dhparam -out dh1024.pem 1024

Generating DH parameters, 1024 bit long safe prime,

generator 2

This is going to take a long time

.+..++*++*

++*

Listing 3. SSH Private/Public keypair generation

$ ssh-keygen

Generating public/private rsa key pair.

Enter file in which to save the key (/Users/matias/

.ssh/id_rsa):

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /Users/matias/

.ssh/id_rsa.

Your public key has been saved in /Users/matias/.ssh/

id_rsa.pub.

The key fingerprint is:

20:f2:99:6e:63:7e:b5:b4:65:79:5f:5a:a3:69:b6:99

root@laptop.example.org

The key's randomart image is:

+--[RSA 2048]----+

| |

| |

| |

| o + . o .o+|

| S . .++*|

| . + o + |

| + .. o |

| .. |

11/2010 18

HOW TO’S Backup your laptop

www.bsdmag.org 19

and a password. Use the local unix account credentials
you have on your home server (please, don’t use the
root account!). Note that tunnelblick may also ask you
for your local (laptop) admin account password, don’t get
confused by the pop ups.

Part 3 – Setup ssh on both sides
This step is required so that the laptop script, when
connecting, doesn’t hang waiting for you to enter your
home server username password.

First, if you don’t have done it already (check if you
have two files named id_rsa and id_rsa.pub under ~/.ssh/),
generate a ssh key pair in your laptop. Use default settings
and blank password when prompted: see Listing 3.

Copy the new generated file /Users/matias/.ssh/id_rsa.pub
contents into your server /home/youraccount/.ssh/authorized_
keys. And finally test that you can connect from your laptop
to your server without being asked for your password with:

$ ssh youraccount@192.168.1.3

If you got successfully to this step, you have to know that
you have passed the difficult part.

Part 3 – Setting up the laptop script
Create a script in your laptop’s home directory with the
following contents: see Listing 4.

You may want to create the file pointed by the variable
BACKUP_EXCLUDES where you can put a list of directories and
files you want to exclude from backups, mine contains
something like this:

Library/Caches

Downloads

iso

backup.log

.Trashes

Listing 4. Laptop backup script

#!/usr/bin/env bash

BACKUP_ROOT=/Users/matias

BACKUP_EXCLUDES=/Users/matias/backup-excludes.txt

BACKUP_LOG=/Users/matias/backup.log

BACKUP_TARGET="youraccount@192.168.1.3:data/backup/"

EXTRA_OPTS=""

Uncomment next line for bandwidht limitation to 100KBPS

#EXTRA_OPTS="$EXTRA_OPTS --bwlimit=100"

Uncomment next line for data compression to save bandwidth (costs a bit more cpu)

#EXTRA_OPTS="$EXTRA_OPTS -z"

This piece of code checks if there is connectivity with the server before actually running the backup

pid='ps -Ac | egrep -i rsync | awk '{print $1}';'

if [! -z "$pid"]

then

 exit 1

fi

/sbin/ping -oqQt3 192.168.1.3 2>&1 > /dev/null || (echo "Unable to contact server on 'date'" > $BACKUP_LOG ; exit 1

)

rsync $EXTRA_OPTS -ae "/usr/bin/ssh -o PasswordAuthentication=no -o UserKnownHostsFile=/dev/null -o StrictHostKeyCh

ecking=no" --partial --exclude-from $BACKUP_EXCLUDES --delete $BACKUP_ROOT $BACKUP_TARGET 2>&1 >

$BACKUP_LOG && echo "Backup completed on 'date'" >> $BACKUP_LOG

11/2010 20

HOW TO’S

.fsevents*

.Spotlight*

Now, run the script from the command line to test it and
check if there is any error. Finally, add a cron entry to run
it daily:

$ crontab -e

Add a line like the following:

0 */6 * * * /Users/msurdi/backup.sh 2>&1 > /dev/null

That will run the backup every 6 hours. Adapt it to your
needs. For me it is enough to run it daily.

Part 4 – Server side backup rotation
Create a script named backup-rotate.sh into your account’s
home directory on your server with the following contents:
see Listing 5. Congratulations! You are done!

Conclusion
There are many backup tools out there, even my laptop
operative system has an integrated backup mechanism
(Time Machine) but none of the ones I tried satisfied my
backup needs. In the particular case of Time Machine
(that seemed the best option to me at first) the main issue
I found was that as my home directory is encrypted with
Filevault it won’t be backed up if I’m logged in. So, after
all, I ended developing this system that’s been working
perfectly for over two years and saved my data and me in
more than one opportunity. Hope this works for you as it
did for me.

Listing 5. Server backup script

#!/usr/local/bin/bash

BACKUP_STORAGE_ROOT=/home/matias/backups

version='date +%Y%m%d'

thisyear='date +%Y'

cp -al $BACKUP_STORAGE_ROOT/backup "$BACKUP_STORAGE_ROOT/data/backup.$version"

((lastmonth='date +%m'-1));

if ((lastmonth<1));

then

((lastmonth+=12));

fi

then

lastmonth="0$lastmonth";

fi

oldbackups='ls -d $BACKUP_STORAGE_ROOT/data/backup.*|grep $thisyear$lastmonth|tail -n +2'

echo $oldbackups

rm -rf $oldbackups

Listing 6. Adding a crontab job

And add it to youraccount's crontab to run nightly:

crontab -e

Add a line like the following:

0 0 * * * /home/youraccount/backup-rotate.sh

MATIAS SURDI
Matias Surdi has been working as a unix systems administrator
since his �rst job, currently working as the IT Lead of a large
Spanish Social Network is a passionate of unix based server
operative systems, networks management and systems tools
development. In his spare time he loves to ride his Triumph
motorbike across the beautiful Spanish landscapes and do sports.

http://www.freebsdmall.com

11/2010 22

HOW TO’S Authenticating NAT with authpf

www.bsdmag.org 23

There are two kinds of NAT: unidirectional (simple
NAT) and bidirectional (BiNAT). The simple NAT
allow hosts from internal network to talk with foreign

peers. The gateway maintains an association table to
enable replies from foreigners reaching the internal host
that initiated connexion. The BiNAT maintains a 1:1 for each
internal host translated making it possible for foreigners to
initiate connexions on translation IP address.

NAT Issues
IP has been designed as a host-to-host protocol. It means
that the source IP of a packet should be the (real) IP of
the host that initiated the packet. If host is behind a NAT,
source IP is the translation address. For some protocols
(ie Kerberos, IPSec etc.), it is a major issue. Moreover,
from the IT security officer NAT may stand for Non
Authenticated Transmission because multiple hosts share
the same IP. It makes it difficult to find out which host
behind NAT had a bad behavior with remote resources
(scan, talking to a botnet ...). Last, on many gateways
that performed NAT, rules are defined for IP address
(host, range or network) and not for a user. It means that
for roaming NAT user, each potential network used must
be translated. In addition, rules are permanently active in
gateway (even if nobody needs NAT, it is performed). As a
result, an important rule set must be maintained covering
each potential NAT use whereas a restricted subset of

people really needs NAT (the rank and file of humanity is
happy with a squid proxy).

Authpf
Authpf is a shell shipped with *BSD firewall PF (Packet
Filter). It makes it possible to trigger actions on the
firewall rule set at SSH connexion on the gateway. Authpf
is mainly used as a topnotch port knocking tool (or, more
hype, SPA – Single Packet Authentication) to open a way
to perform any kind of remote maintenance by identified
users with minimum client tools (a simple SSH client). A
way to use it to (partially) authenticate NAT with a LDAP
directory will be discussed.

Setting up the gateway

Basic PF setup
Supplied configuration has been performed on OpenBSD
4.6. PF is already compiled in generic kernels. It only
needs to be enabled through rc.conf.local:

pf=YES

pf_rules=/etc/pf.conf.local

The directive pf _ rules specify an alternate configuration
file to standard pf.conf. I like to do it this way to prevent loss
of pf.conf at upgrade. PF anchors for authpf must be placed

Authenticating NAT
with authpf
NAT (Network Address Translation) is a way to (hide) several
hosts behind a gateway. It operates on IP packets (layer 3) by
rewriting source address of each one. It should be noticed
that another mechanism called PAT (Port Address Translation)
operates on TCP/UDP ports (layer 4).

What you will learn…
• Authenticate outgoing NAT
• Authpf
• Linking Authpf to LDAP

What you should know…
• Basic knowledge of LDAP
• What is NAT
• Make an SSH connexion

11/2010 22

HOW TO’S Authenticating NAT with authpf

www.bsdmag.org 23

azerty as password (who really cares about security?). A
filter is supplied to select only inetOrgPerson (a very minimal
subset of attributes commonly used when you store people
in LDAP) on uid attribute. Shell is forced at /usr/sbin/authpf
value. Now, users must be created with useradd command:

useradd -L ldap-authpf -d /var/empty -s /usr/sbin/authpf

-r 1500..3000 -g =uid zaza

This command create user zaza with a non existent
home (/var/empty), authpf shell and login method ldap-
authpf (the one previously created in login.conf). A
UID between 1500 and 3000 is affected as well as a
dedicated group (or UPG: User private Group – see
RedHat documentation for details).

Per user ruleset con�guration
Specific rules for user must be added in /etc/authpf. As an
example /etc/authpf/users/zaza/authpf.rules contains:

int_if=bge0

nat pass log on $int_if from $user_ip to any -> XXX.XXX.XXX.XXX

This simple rule adds a NAT translation rule when zaza
connects trough SSH on the gateway. $user _ ip is a
variable maintained by authpf which contains the source
IP that performed SSH connexion. It means that as long
as SSH connexion is opened, source address of each
packet originating from $user _ ip and going through
the gateway is rewrited to XXX.XXX.XXX.XXX. Logs of SSH
connections are stored in authlog file.

It should be highlighted that an IP alias for XXX.XXX.XXX.XXX
must be defined on outgoing interface to enable packet
reception from remote to internal client. In rc.local:

ifconfig bge1 inet alias XXX.XXX.XXX.XXX netmask 255.255.255.0

Conclusion
We addressed the issue of roaming users thanks to $user_
ip variable. We also addressed the problem of permanent
NAT access (NAT is only active during SSH session).
Finally, we also increased quality of network auditing
access process. NAT access is logged for a user and not
for an IP. Indeed, this solution is not perfect because NAT
always operates trusting a source IP (and not a user) and
it’s very easy to spoof an IP on the same LAN segment.

in the rule set. Anchors can be considered as subsets of
tables and rules (NAT, RDR, BINAT and filtering) which can
be dynamically loaded through pfctl. In pf.conf.local:

nat-anchor „authpf/*”

rdr-anchor „authpf/*”

binat-anchor „authpf/*”

anchor „authpf/*”

Anchors to load authpf rules are added. The sequence
is important (nat, rdr, binat, rules) pay attention to put the
anchor in adequate section (for example, nat-anchor in
NAT section of your pf.conf.local). If you misunderstand
this recommendation, check manpage of pf.conf to see
howto organize sections of pf.conf. Those anchors are
used to launch specific sub rule set per user.

Users management
In many organizations, a LDAP is used to store each user.
A very minimum entry for a user contains an uid and a
userPassword hashed with SSHA. Each user must be
able to perform a simple bind against the directory service.
In our configuration, we would like to link authenticated
NAT with our LDAP.

OpenBSD can handle LDAP in two ways: with a NIS-
like operating mode called ypldap (it means that yp*
operations are performed against an LDAP backend
instead of pushing maps to each hosts). Ypldap requires
users to be stored as PosixAccount wich is not convenient
for our needs. The second way is to only use login_ldap
to perform simple bind with accounts defined on the
gateway. The first method suits well for large organization
which have posixAccount defined for each user planning
to make massive use of NAT. The second is more flexible.
We will discuss the second. In /etc/login.conf, a new
authentication method ldap-authpf is defined:

ldap-authpf:\

 :auth=-ldap:\

 :x-ldap-server=myldap.mydomain:\

 :x-ldap-basedn=ou=People,dc=mydomain:\

 :x-ldap-binddn=cn=toto,ou=user4bind,dc=mydomain:\

 :x-ldap-bindpw=azerty:\

 :x-ldap-filter=(&(objectClass=inetOrgPerson)(uid=%u)):\

 :welcome=/etc/motd.authpf:\

 :shell=/usr/sbin/authpf:\

 :tc=default:

It enables a LDAP server myldap.mydomain accessible
trough a binddn (cn=toto, ou=user4bind, dc=mydomain) with

NICOLAS GRENECHE
Nicolas Greneche (nicolas.greneche@univ-orleans.fr) – [Free|Open]BSD
addicted Technical blog (in french): http://blog.garnett.fr

11/2010 24

HOW TO’S Xmodmap – on the way to writing hieroglyphs quickly

www.bsdmag.org 25

Presented is a sample Xmodmap keyboard map
with four keyboard layouts that users can toggle
with by Caps Lock: 1) Standard English keyboard;

2) IAST keyboard layout for transliteration of Sanskrit; 3)
a layout to be defined by users; 4) keyboard layout for
Devanagari.

XKB and Xmodmap
First, I must say that Linux (Unix) uses two approaches
to configure the keyboard layout (they are both
independent of each other): XKB and Xmodmap. XKB
is an extension of X, many people say that it is better,
but too robust and perhaps less understandable by
beginners. Xmodmap is one of the oldest ways how
to configure your keyboard layouts – a little easier
approach, especially good for experimentation, but no
only that.

XKB, too, allows a number of easy solutions, but if
we look at hundreds of Linux distributions and Window
Managers including BSD, Xmodmap solution basically
works the same way everywhere – whether on PC-BSD,
SuSE Linux, Debian Linux, Slackware Linux, etc. The
same can be said about XKB, too, but only from the
system perspective. In the comfortable environment like
GNOME/KDE, things are always a little easier than in
other WM’s. This is not a problem for experienced users,
but for beginners it may sometime be a difficult task to

find a way how to type some special – that is, very exotic
characters.

But let us forget all these technical discussions on
how the above two approaches differ from each other
– for now it is important to know that Xmodmap does not
require any additional editing of /etc/X11/xorg.conf file;
the user will just load the Xmodmap map by running the
command: xmodmap /home/use /xmodmap.map. It will work on
every X server. The only condition to successfully type
any special character on your Linux/Unix box is to use
the UTF encoding.

The Xmodmap utility is a command (xmodmap) that
will load the xmodmap map (a text file with definitions
for keyboard layouts). You can thus assign a number
of characters to your keyboard keys and redesign your
keyboard layout the way that is suitable for you. After
you restart your X, you will be again working with the
XKB approach, which is the default setup for Linux/Unix
today. If you do not restart your X, you may reload another
Xmodmap map.

Xmodmap
Xmodmap approach is perhaps a little easier than XKB
– especially when talking about Unix in global, because if
you would like to learn Devanagari (Indian script used for
writing), all you need is to have the .Xmodmap file in your
home directory (the dot means that the file is a system file

Xmodmap

This article is about how to make your own Xmodmap map
– a definition for a keyboard layout in Linux/Unix.

on the way to writing hieroglyphs quickly

What you will learn…
• You will learn how to write exotic characters with
Xmodmap

What you should know…
• Xmodmap works in any Unix-like environment

11/2010 24

HOW TO’S Xmodmap – on the way to writing hieroglyphs quickly

www.bsdmag.org 25

to understand this – Sanskrit as a language can also be
written in Tibetan scripts, the Tamil script, or even in the
Siddham script, which the Shingon Buddhist school uses
in Japan.

Researchers often work with transliteration (as well
as with tools that automate the conversion process to
Latin and vice versa) for various reasons. It is more
convenient for people of a different cultural background
– especially for Europeans and Americans. And if you
are not familiar with some exotic languages, you can at
least read them, so in case someone starts a research
project aimed at mapping similar words between Indian
and Slavic languages, for example, no one can deny the
significance of transliteration and no time needs to be
wasted by learning the complex and difficult hieroglyphic
letters.

Keyboard map for IAST transliteration and the
Devanagari script
On the basis of this Xmodmap map any researcher or
student can build his or her own keyboard layout. This
Xmodmap map provides four keyboard layouts and you
may toggle them by Caps Lock: 1) Standard (English)
Keyboard (after you load the Xmodmap map with the
command: xmodmap /home/user/xmodmap.map); 2) keyboard
for IAST transliteration – Sanskrit; 3) user-defined
keyboard only with p p strings to be later changed; 4)
Devanagari – keyboard layout with the script to write
Sanskrit and other Indian languages including Hindi.

If you press the Caps Lock key while working with the
last keyboard (Devanagari) layout, you will return to the
first (Standard English) keyboard.

This Xmodmap map requires UTF codes
However, if you need other languages such as Chinese,
Telugu, Urdu, etc. – either to use the original writing

and that it will be loaded automatically) with the following
contents only: keysym k = U0915 k

Linux (X) should load the .Xmodmap configuration
file automatically and you, after pressing the letter k,
should see the character Ŧ. U0915 k means that when
you press a key with this definition (the letter k on the
English keyboard), you will see the sign Ŧ (its UTF code
is U0915) and after applying the shift key you will see our
Latin character k. If you want a capital character of any
available choice, write it capitalized into the Xmodmap
map: U0915 K.

Do you want to remap a letter (or more) on your
keyboard? Any code you put into the .Xmodmap file will
be available for you after your X Window system starts, or
even after you load your Xmodmap map manually – it can
be additionally loaded by running the following command
from the Terminal Window in your X environment:
xmodmap /home/user/xmodmap.map

Transliteration – what is it and why is it used?
It is the conversion of one script (a writing system) from
one writing system to another one, which can also render
the phonetics; the term transcription is also used. In our
cultural environment one writing system is mostly the
Latin alphabet (romanization), when scholars (in scientific
disciplines such as lexicography, etc.) use one system
of transliteration, for example, Romaji – romanization of
Japanese, or IAST for Sanskrit (International Alphabet of
Sanskrit Transliteration).

For systems of transcription such as IAST, which also
renders the phonetics, we must use special characters
such as a ā Ā ṝ Ṝ ṇ Ṇ ṣ Ṣ ṁ , so our standard Latin alphabet is
not anymore sufficient.

It is also important to say that Sanskrit as a language is
different from Hindi and both languages can be written into
the Devanagari script. In India, there are many languages,
and in addition to Hindi or Konkani, for example, the
Devanagari script is also used in Nepal. For the reader

Figure 1. UTF codes for Devanagari
Figure 2. Run xmodmap xmodmap.map and learn how to write in
any language

11/2010 26

HOW TO’S

www.bsdmag.org

system of such languages, or their transliterated form (in
Latin), you should know something about UTF codes (that
you must write into this Xmodmap map).

To type a variety of special characters, you need to have
their UTF codes – use search engines, as they provide
very rich resources. You can also alternatively look into
the file

/usr/include/X11/keysymdef.h in Linux, or (/usr/local/
include/X11/keysymdef.h in FreeBSD). The Latin letter a
(with a macron – a horizontal line above it) is defined in
keysymdef.h as follows:

define XK_amacron 0x03e0 / * U 0101 LATIN SMALL LETTER A

U101 is the Unicode code for the character ā.
If the keyboard map is not loaded automatically, or even

in case one instance of it has already been loaded, you
may load any other Xmodmap map and use any special
characters defined in it: xmodmap /home/user/xmodmap.map2

The previously loaded keyboard layout will be
deactivated and you will work with the keyboard layout
map you have just loaded.

The Xmodmap map presented by this article allows 8
letters to be assigned to one keyboard key. As it allows
toggling between four keyboards, I will explain one line of
the definitions of keys in it:

keycode 0x1F = i I U012B U012A p p U0917 U0918

keycode 0x1F is a key that has standardly the letter i
I assigned to it on our English keyboard. You may
also use xkeycaps (xev, too) to find out which letter
is assigned to which key – xkeycaps is a program

that tells you everything about how characters are
assigned to your (or any) keyboard. Thus, if you load
this Xmodmap map, you will get the standard English
keyboard layout at first. After pressing Caps Lock one
time, you will toggle the keyboard to IAST transliteration
– you will see the Latin small letter ī (with macron)
when you press the letter i; after pressing the Shift key,
you will see the Latin capitalized letter I (with macron).
This also pertains to the letters like a, m, t, so try this
out – ā Ā ṣ Ṣ ṁ, etc. Pressing Caps Lock again will toggle
you to a user-defined keyboard layout that assigns p p
characters to keys (not to all of them). The last time
you press Caps Lock will allow you to write in the
Devanagari script – after pressing the key i, you will
see the sign �.

Any available UTF codes you use in this Xmodmap
map will appear on your screen in a good text editor
(tested in gedit and OpenOffice.org) when you type
them; however, some very special characters also
require special fonts to be installed, as, of course, hardly
any distributor of Linux expects that users want to write
in Egyptian hieroglyphs.

Some “techie” information
related to Xmodmap
This map was tested on my Debian, OpenBSD, Ubuntu,
and FreeBSD box. I must say that in GNOME/KDE the
third keyboard map (p p) may not work probably due to
the reason that the GNOME/KDE desktop has its own
system for localization. But after I uninstalled the Slovak
Keyboard (GNOME>Preferences>Keyboard), all four
keyboard layouts worked properly with this Xmodmap
map.

In the worst case you need to press the Caps Lock key
only twice (one time for the romanization of Sanskrit and
second time for the Devanagari script); if you press it the
third time, you are back in the first – English keyboard.

Download the Xmodmap map with four
keyboard layouts
LINK

Some notes how to use the keyboard layout
with IAST transliteration
IAST is the International Alphabet for Sanskrit
Transliteration, but it can also be used for transliteration
of Devanagari, thus also languages such as Hindi and
many others.

This Xmodmap map is a sample map and its primary
purpose is to let users redefine their keyboards
according to their needs. The keyboard map for IAST Figure 3. Working with OpenOffice in OpenBSD becomes a joy

11/2010 26

HOW TO’S

www.bsdmag.org

(after loading the map, you press the Caps Lock only
once) corresponds to the English keyboard (which is
the first keyboard layout) and it will allow you to type
the following special (Latin) letters (First is the English
keyboard layout, which is activated as soon as this
Xmodmap map is loaded; for it to work, the Caps Lock
key does not need to be pressed):

First: a A d D r R t T u U i I s S h H l L n N

IAST: ā Ā ḍ Ḍ ṛ Ṛ ṭ Ṭ ū Ū ī Ī ṣ Ṣ ḥ Ḥ ḷ Ḷ ñ Ñ

As the letter n N has several more alternatives (ṅ Ṅ ñ Ñ),
the other instances of the letter N can be typed by using
the apostrophe/tilde key and then the keys that start
with and follow the number 1 on the standard keyboard
layout:

Apostrophe / tilde (`~) corresponds to sign ṇ Ṇ
Number 1 corresponds to: ṅ Ṅ
Number 2 corresponds to: ṝ Ṝ
Number 3 corresponds to: ś Ś
Number 4 corresponds to: ḹ Ḹ

Users can type the Candrabindu sign in the IAST
keyboard layout by pressing the key 0x15 on their
keyboard (where the English keyboard has the equal
sign combined with the plus sign): ̐.

Some lines in this Xmodmap map, such as the keycode
0x15 = equal plus U0310 plus, which contain only four items,
can be extended to eight items.

Even though we work with the Latin alphabet, systems
of transliteration vary. But users will be able to make
their own keyboard layout and thus also any system of
romanization used for transliteration of languages.

JURAJ SIPOS
Juraj lives in Slovakia, where he works in a library (in an
educational institute). He has been writing and selling computer
articles for over ten years. He wrote an xmodmap howto
(www.faqs.org/docs/Linux-mini/Intkeyb.html) and in addition to
computers he is also interested in spirituality, but not really the
guru side of things, but more-so freedom and self-actualization.
His website says more: www.freebsd.nfo.sk

http://www.bsdmag.org

11/2010 28

HOW TO’S

After FreeBSD system installation, we have fresh
packages and up to date base system, but as next
FreeBSD RELEASE appears its good to update

to get new features and bugfixes. This process is often
connected with lots of compiling and wasted time, especially
for Ports infrastructe since FreeBSD’s base system can be
easyly updated binary way with freebsd-update. This guide
shows how to update all installed packages with base
system without needless, resources and time consuming
process, using the fact, that with every new release we
have also prebuilt binary packages ready to install.

Currently both legacy and main branches of FreeBSD
will get release updates soon, 7.4-RELEASE and 8.2-
RELEASE to be precise, so You will be preparred for
upgrade as new version arrive ;)

Configuration Backup
No matter how simple the upgrade will be, according to
Murphy Laws (http://en.wikipedia.org/wiki/Murphy_law), if
anything can go wrong, it will go wrong, so just in case lets
backup the current configuration with simple tar(1) to make
archive of current /etc and /usr/local/etc directories.

tar -czf /root/ETC.tar.gz /etc /usr/local/etc

Base System Upgrade
Upgrade if the base system is relatively easy, its about
to type 4 commands, read and understand on screen

comunicates, lets assume for example that we want to
update do 8.1-RELEASE version.

freebsd-update upgrade -r 8.1-RELEASE

freebsd-update install

shutdown -r now

freebsd-update install

While doing the base system procedure we will be asked for
installed datasets and about modifications in config files, You
have backuped up Your configuration on step Configuration
Backup. (You did right?) so You can safely say y here.

Packages Upgrade
If it goes to packages, we will use the fact, that all
packages are build to newest version along with newest
*-RELEASE version. Instructions below include gathering
currently installed packages, wiping all of them and the
adding them again, but from newer RELEASE build.

pkg_info -qoa | sort > /root/pkg_list.OLD

pkg_delete -a -f

rm -r -f /boot/modules /usr/local /var/db/pkg

while read PKG; do pkg_add -r $(basename ${PKG}); done

< /root/pkg_list.OLD

At this point all old packages have been removed, and
latest pacakges have been installed on their place, it works

FreeBSD Binary
Upgrade
After We install FreeBSD system, we have fresh packages and up
to date base system, but as new RELEASE appears its good to
update to get new features and bugfixes.
What you will learn…
• After reading/completing this HOWTO You will know how to

upgrade both the FreeBSD’s base system and packages using
binary packages without needless compilation process in an
easy and mostly automated way.

What you should know…
• You should have knowledge about upgrading/updating

FreeBSD’s base system (check man freebsd-update), adding/
removing packages (check man pkg_info/man pkg_add/man
pkg_delete).

 (with packages)

FreeBSD Binary Upgrade

www.bsdmag.org 29

< textproc/docbook-410

< x11/ecore-x11

Cleanup
rm -r -f /root/pkg_list.*

rm -r -f /root/ETC.tar.gz

If we had made some bigger changes in the
configuration, we may keep the old configuration, which
is archived in the /root/ETC.tar.gz file.

Voila! You system is now up to date, both the FreeBSD’s
base system and packages.

automatically, unless port nam has changed, like some
time with VirtualBox, when its port name changed from
emulators/virtualbox into emulators/virtualbox-ose, so the
only risk here, is that some packages will not be added
automatically.

Searching for Missed Packages
Now we will get list of just installed aplications, and compare
it to the list of old packages before update, its quick and
easy way to add (eventually) missing packages.

pkg_info -qoa | sort > /root/pkg_list.NEW

diff /root/pkg_list.* | egrep „^(<|>)”

This will give You the list like that one below, the list
of ports/packages that You need to check, what has
changed, maybe there are no packages for that port (like
lame because of patents).

< devel/bison

> graphics/cairo

< devel/cmake

> security/clusterssh

SŁAWOMIR WOJTCZAK VERMADEN
Slawomir Wojtczak (vermaden) is just another busy sysadmin,
that tries to use FreeBSD as desktop/workstation to overtake/
seize many complex mechanisms like IBM TSM, Oracle databases
and various UNIX/Linux variants that run these services. Deep
K.I.S.S principle follower. Very interested in UNIX technologies
(even these proprietary), but often towards BSD solutions,
active forum troll at many BSD, UNIX and Linux forums. Feel free
to spam him at: vermaden@gmx.com

a d v e r t i s e m e n t

http://www.rootbsd.net

11/2010 30

HOW TO’S Introduction to WebDAV

www.bsdmag.org 31

What is WebDAV
WebDAV stands for Web-based Distributed Authoring
and Versioning. Authoring means creating, updating and
managing content located on a Web server; distributed
means that a resource can have several authors; and
versioning means that different revisions of a resource
can exist. Simply said, it is a protocol for publishing

documents to a Web server. It is officially defined by RFC
4918 obsoleting RFC 2518. Versioning is excluded from
RFC 2518 and RFC 4918 and is defined by RFC 3253.
We will not discuss it in this article.

WebDAV is an extension of HTTP and the same media
that is used to read Web content is used to write that
content. All existing HTTP infrastructure can be reused

Introduction to
WebDAV
WebDAV is an extension of the HTTP protocol that performs
remote Web content magagement, thus turning the Web
into writable media.

What you will learn…
• The basic working of WebDAV

What you should know…
• Python programming; Apache administration

Listing 1. Initial httpd configuration

ServerRoot "/opt/local/apache2"

Listen 80

User www

Group www

LoadModule autoindex_module modules/mod_autoindex.so

LoadModule dir_module modules/mod_dir.so

LoadModule log_config_module modules/mod_log_config.so

LoadModule mime_module modules/mod_mime.so

DocumentRoot "/opt/local/apache2/htdocs"

DefaultType text/plain

TypesConfig conf/mime.types

DirectoryIndex index.html

ErrorLog "logs/error.log"

LogLevel warn

LogFormat "%h %l %u %t \"%r\" %>s %b" common

CustomLog "logs/access.log" common

<Directory "/opt/local/apache2/htdocs">

 Options Indexes FollowSymLinks

 AllowOverride None

</Directory>

<VirtualHost localhost:80>

 DocumentRoot "/opt/local/apache2/htdocs"

</VirtualHost>

11/2010 30

HOW TO’S Introduction to WebDAV

www.bsdmag.org 31

Listing 2. Basic authentication of the DAV directory

<Directory "/opt/local/apache2/htdocs/davtest">

 DAV On

 AuthName "DAV dir"

 AuthType Basic

 AuthUserFile /opt/local/apache2/conf/davusers

 <LimitExcept GET>

 Require davuser

 </LimitExcept>

</Directory>

Listing 3. OPTIONS request and response

#!/usr/bin/env python

import base64

import getpass

import httplib

import logging

import logging.config

import sys

import urlparse

logging.config.fileConfig('logging.config')

logger = logging.getLogger(sys.argv[0])

def send_request(conn, urlcomps, user=None,

password=None):

 headers = {'Host': urlcomps.hostname,

 'User-Agent': sys.argv[0]}

 if user and password:

 auth = base64.b64encode("%s:%s" % (user,

password))

 headers['Authorization'] = 'Basic %s' % auth

 logger.debug('Request headers: %s' % headers)

 conn.request('OPTIONS', urlcomps.path, None,

headers)

 response = conn.getresponse()

 return response

def handle_response(response):

 logger.debug('Response status: %s %s' %

 (response.status, response.reason))

 logger.debug('Response headers: %s',

response.getheaders())

 logger.debug('Response body: %s', response.read())

 if response.status != httplib.OK:

 logger.error('Status line: %d %s' %

 (response.status,

response.reason))

 sys.exit(2)

 davHeader = response.getheader('DAV')

 if davHeader:

 logger.info('DAV header: %s' % davHeader)

 allowed = response.getheader('Allow')

 logger.info('Allowed methods: %s' % allowed)

def main():

 from optparse import OptionParser

 usage = '%prog [options] <url>'

 parser = OptionParser(usage = usage)

 parser.add_option('-u', '--user', dest='user',

 (options, args) = parser.parse_args()

 if len(args) != 1:

 logger.error('Please provide a url')

 sys.exit(1)

 url = args[0];

 password = None

 if options.user:

 password = getpass.getpass('Password: ')

 urlcomps = urlparse.urlparse(url)

 host = urlcomps.hostname

 port = urlcomps.port

 logger.info('Sending OPTIONS request to %s' % url)

 conn = httplib.HTTPConnection(host, port)

 response = send_request(conn, urlcomps,

 user=options.user,

password=password)

 handle_response(response)

 conn.close()

if __name__ == '__main__':

 main()

11/2010 32

HOW TO’S Introduction to WebDAV

www.bsdmag.org 33

and no additional protocols are required to update a site.
Let us briefly compare it with ftp and scp as tools that can
transfer files to a web server. Almost every platform has
them or can have them at no price – the cost of obtaining
and installing is not an argument favoring WebDAV. They
need to be configured, however. Imagine the resource is
located at http://myserver/mysite/. It is not easy to conclude
from the url the address of the ftp or sshd server, its port
and the location of the site on the filesystem. The ftp or
ssh access should also be protected and it is well outside
of the realm of the web server where the content lives. In
the case of WebDAV knowing the url of the resource is
enough to update the resource. The Web server should
protect the write-access to the resource, but it requires
only configuration of the Web server software.

WebDAV provides an ability to lock a resource thus
preventing authors from overwriting their changes. It can
also assign metadata to content – for example who is the
owner of a file, who made the last change, etc.

WebDAV adds some new HTTP methods, headers and
status codes and redefines some existing ones.

How WebDAV extends HTTP
WebDAV modifies the OPTIONS method to list the WebDAV
capabilities of the server.

The original HTTP protocol defines PUT and DELETE
methods – a PUT request creates a resource and a DELETE
one removes it. WebDAV modifies PUT and DELETE
to support locking – if an author locks a resource, then
depending on the type of lock no other author can change
it. It changes DELETE to support removal of collections or
directories.Listing 4. DAV and Allowed Headers of WebDAV resource

$./davoptions.py -u davuser http://localhost/davtest/

Password:

Sending OPTIONS request to http://localhost/davtest/

DAV header: 1,2, <http://apache.org/dav/propset/fs/1>

Allowed methods: OPTIONS,GET,HEAD,POST,DELETE,TRACE,

 PROPFIND,PROPPATCH,COPY,MOVE,LOCK,UNLOCK

Listing 5. PUT request

def send_request(conn, urlcomps, user, password,

 filename,

 contenttype=None,

 locktoken=None):

 headers = {'Host' : urlcomps.hostname,

 'User-Agent' : sys.argv[0]}

 auth = base64.b64encode('%s:%s' % (user,

password))

 headers['Authorization'] = 'Basic %s' % auth

 if locktoken:

 headers['If'] = '<%s> (<%s>)' %

(urlcomps.geturl(), locktoken)

 f = open(filename, 'r')

 body = f.read()

 f.close()

 logger.debug('Request headers: %s' % headers)

 logger.debug('Request body: %s' % body)

 conn.request('PUT', urlcomps.path, body, headers)

 response = conn.getresponse()

 return response

Listing 6. PUT response

def handle_response(response):

 if response.status == httplib.CREATED:

 logger.info('The resource was created')

 elif response.status == httplib.NO_CONTENT:

 logger.info('The resource was replaced')

 else:

 logger.error('Failed to put the resource;

status %s' %

 response.status)

Listing 7. MKCOL request

def send_request(conn, urlcomps, user, password,

 locktoken=None):

 headers = {'Host' : urlcomps.hostname,

 'User-Agent' : sys.argv[0]}

 auth = base64.b64encode('%s:%s' % (user,

password))

 headers['Authorization'] = 'Basic %s' % auth

 if locktoken:

 headers['If'] = '<%s>' % locktoken

 body = None

 logger.debug('Request headers: %s' % headers)

 logger.debug('Request body: %s' % body)

 conn.request('MKCOL', urlcomps.path, body,

headers)

 response = conn.getresponse()

 return response

11/2010 32

HOW TO’S Introduction to WebDAV

www.bsdmag.org 33

The new methods defined by WebDAV are:

• MKCOL Creates a collection (directory) on the
server;

• COPY Copies a resource or a collection of resources
to a given destination;

• MOVE Moves a resource or a collection of resources
to a given destination;

• LOCK Locks a resource or multiple resources.
Locking is used to alleviate the problem of overwriting
a previous update, although it does not completely
eliminate it;

• UNLOCK Unlocks a previously locked resource.
• PROPPATCH Sets one or more properties on one

or more resources, i.e. it associates metadata to
resources;

• PROPFIND Retrieves the properties (metadata) of a
resource; can be used to retrieve directory listings.

The new headers are:

• DAV Describes the WebDAV support of the server
as levels of compliance; used in the response of an
OPTIONS request;

• Depth Controls the level of hierarchy to which
a request sent to a collection will be applied. A
value of 0 means that only the collection itself is
affected; 1 means that the collection and its files
but not the subcollections are affected; if infinity
– the collection, its files and its subcollections
recursively are affected. Some Web servers can
refuse requests with Depth: infinity for performance
reasons;

• Timeout Specifies a desired timeout of a lock in a
LOCK request; the server may not honor it and can
return a different timeout in the response;

• Destination Specifies the destination to which a
resource will be copied or moved in a COPY or MOVE
request;

• Overwrite Specifies if the destination should be
overwritten in a COPY or MOVE request.

Listing 8. MKCOL response

def handle_response(response):

 if response.status == httplib.CREATED:

 logger.info('Created the collection')

 elif response.status == httplib.METHOD_NOT_ALLOWED:

 logger.error('The resource already exists')

 elif response.status == httplib.CONFLICT:

 logger.error('The parent collection does not exist')

 elif response.status == httplib.MULTI_STATUS:

 parse_xml_body(data)

 else:

 logger.error('Failed to created the collection; status %s' %

 response.status)

def parse_xml_body(data):

 dom = parseString(data)

 multistatusel = dom.documentElement

 responses = multistatusel.getElementsByTagNameNS('DAV:', 'response')

 for responseel in responses:

 hrefel = responseel.getElementsByTagNameNS('DAV:', 'href')[0]

 href = hrefel.firstChild.data

 statusel = responseel.getElementsByTagNameNS('DAV:', 'status')[0]

 status = statusel.firstChild.data

 descel = responseel.getElementsByTagNameNS('DAV:', 'responsedescription')[0]

 desc = descel.firstChild.data

 logger.info('Status for %s: %s – %s' % (href, status, desc))

11/2010 34

HOW TO’S Introduction to WebDAV

www.bsdmag.org 35

WebDAV introduces the following status codes:

• 207 Multi-Status Used in responses requests that
act on multiple resources and may have different
statuses for each resource;

• 422 Unprocessable Entity Can be returned in a
response for any method, when the server does

not understand the XML body sent in the request;
can happen when the XML body is well-formed but
semantically incorrect;

• 423 Locked When returned as a response of a LOCK
request, it means that the resource is already locked;
when returned by another request, it means that the
destination is locked and the user has not provided

the lock token for it;
• 424 Failed Dependency Means that the method
cannot be executed, because the requested
action depends on another action that fails;
• 507 Insufficient Storage Used in PROPPATCH,
COPY, MKCOL, when there is not enough free space
to create a property, copy a resource or make a
collection.

A WebDAV demo
We will illustrate how to set up a DAV server
and how to interact with it with a DAV client.
The WebDAV support in the web servers varies
– Apache Httpd with mod_dav has full support,
Microsoft IIS as well. Nginx has partial support
– it implements only PUT, MKCOL, DELETE, COPY and
MOVE. Lighttpd’s lock support is experimental.
Most modern operating systems provide built-
in WebDAV clients. We will use Apache Httpd in
this article and cadaver as a client.

Apache Setup
We start with the following simple configuration
file and we gradually add DAV support in it (see
Listing 1). The modules mod_dav and mod_dav_so
provide the DAV support and we load them:

LoadModule dav_fs_module modules/mod_dav_fs.so

LoadModule dir_module modules/mod_dir.so

We provide the location of the database where
resource locks are stored:

DAVLockDB /opt/local/var/run/httpd/davlockdb

We specify the minimum timeout of the locks:

DAVMinTimeout 240

We also need to enable DAV on some directory:

<Directory "/opt/local/apache2/htdocs/davtest">

 DAV On

</Directory>

Listing 9. LOCK request

def send_request(conn, urlcomps, user, password,

 timeout=120, depth='infinity',

 locktoken='None'):

 headers = {'Host' : urlcomps.hostname,

 'User-Agent' : sys.argv[0],

 'Timeout' : 120,

 'Depth':depth}

 auth = base64.b64encode('%s:%s' % (user, password))

 headers['Authorization'] = 'Basic %s' % auth

 body = None

 if locktoken:

 headers['If'] = '<%s>' % locktoken

 else:

 body = construct_body(user)

 logger.debug('Request headers: %s' % headers)

 logger.debug('Request body: %s' % body)

 conn.request('LOCK', urlcomps.path, body, headers)

 response = conn.getresponse()

 return response

def construct_body(user):

 dom = getDOMImplementation()

 bodydoc = dom.createDocument('DAV:', 'D:lockinfo', None)

 lockinfoel = bodydoc.documentElement

 lockinfoel.setAttribute('xmlns:D', 'DAV:')

 lockscopeel = bodydoc.createElementNS('DAV:', 'D:lockscope')

 lockinfoel.appendChild(lockscopeel)

 exclusiveel = bodydoc.createElementNS('DAV:', 'D:exclusive')

 lockscopeel.appendChild(exclusiveel)

 locktypeel = bodydoc.createElementNS('DAV:', 'D:locktype')

 lockinfoel.appendChild(locktypeel)

 writeel = bodydoc.createElementNS('DAV:', 'D:write')

 locktypeel.appendChild(writeel)

 ownerel = bodydoc.createElementNS('DAV:', 'D:owner')

 lockinfoel.appendChild(ownerel)

 ownertext = bodydoc.createTextNode(user)

 ownerel.appendChild(ownertext)

 body = bodydoc.toxml('UTF-8')

 return body

11/2010 34

HOW TO’S Introduction to WebDAV

www.bsdmag.org 35

It means the url http://localhost/davtest/ can accept DAV
requests and they modify the contents of /opt/local/

apache2/htdocs/davtest. A web sever’s process will perform
those modifications so it should have write permissions
to that directory:

mkdir -m 770 /opt/local/apache2/htdocs/davtest

chown www:www /opt/local/apache2/htdocs/davtest

Same applies for the lock database:

mkdir -m 770 /opt/local/var/run/httpd

chown www:www /opt/local/var/run/httpd

A Test Run with Cadaver
We now put a file to the WebDAV directory using the
interactive client cadaver:

$ echo "dav test" > davtest.txt

$ cadaver

dav:!> open http://localhost/davtest/

dav:/davtest/> put davtest.txt

dav:/davtest/> rm davtest.txt

Uploading davtest.txt to `/davtest/davtest.txt'

The file is put to http://localhost/davtest/davtest.txt and it
can be opened in a browser. The command open sends
an OPTIONS request to /davtest to check the server DAV
capabilities. If the server supports WebDAV, the client then
sends PROPFIND to retrieve the contents of the collection.
The command put sends a PUT request whose body is the
contents of davtest.txt and rm triggers a DELETE request. The
cadaver session proves that Apache setup works.

Authentication of the WebDAV operations
The WebDAV requests must be authenticated because
they modify or destroy the contents of the web server. We
implement basic authentication.

Listing 10. Locking a resource

$./davlock.py -u davuser http://localhost/davtest/

davtest.txt

Password:

Locking http://localhost/davtest/davtest.txt with timeout 120

and depth infinity Locked with locktoken

"opaquelocktoken:ce018a78-a1c4-4d11-8e47-a1b04584836e",

depth infinity and timeout Infinite

Listing 11. Failed PUT and MKCOL requests on a locked collection

$./davlock.py -u davuser -d infinity http://localhost/

davtest/

Password:

Locking http://localhost/davtest/ with timeout 120 and

depth infinity

Locked with locktoken "opaquelocktoken:fd2b0845-74a3-

4f09-85a3-65fea74d097a",

depth infinity and timeout Infinite

$./davput.py -u davuser -f davtest.txt \

 http://localhost/davtest/davtest.txt

Password:

Failed to put the resource; status 423 Locked

$./davmkcol.py -u davuser http://localhost/davtest/dir/

Password:

Status for /davtest/dir: HTTP/1.1 424 Failed Dependency

Status for /davtest: HTTP/1.1 423 Locked

$./davput.py -u davuser -f davtest.txt \

 -l opaquelocktoken:fd2b0845-74a3-4f09-85a3-

65fea74d097a \

 http://localhost/davtest/davtest.txt

Password:

Replaced the resource

Listing 12. UNLOCK request and response

def send_request(conn, urlcomps, user, password,

 locktoken):

 host = urlcomps.hostname

 port = urlcomps.port

 path = urlcomps.path

 headers = {'Host' : host, 'User-Agent' : sys.argv[0],

 'If' : '<%s>' % locktoken}

 auth = base64.b64encode('%s:%s' % (user, password))

 headers['Authorization'] = 'Basic %s' % auth

 logger.debug('Request headers: %s' % headers)

 conn.request('UNLOCK', path, None, headers)

 response = conn.getresponse()

 return response

def handle_response(response):

 if response.status == httplib.NO_CONTENT:

 logger.info('Unlocked')

 else:

 logger.error('Response status: %s %s' %

 (response.status,

response.reason))

11/2010 36

HOW TO’S Introduction to WebDAV

www.bsdmag.org 37

We load the modules that provide basic authentication
with credentials stored in a file:

LoadModule auth_basic_module modules/mod_auth_basic.so

LoadModule authn_file_module modules/mod_authn_file.so

LoadModule authz_user_module modules/mod_authz_user.so

We create a file with a test user’s password. The file is
davusers in the Apache conf/ directory; the user’s name
is davuser with password davtest.

htpasswd -b -c davusers davuser davtest

Listing 2 shows the configuration of the DAV-enabled
directory with basic authentication.

When we open http://localhost/davtest/ in cadaver it
asks for a username and a password – because it sends
an OPTIONS request and it is protected.

The basic authentication is not a great defense as the
passwords are transferred almost in plain text, but it can
give decent protection if used over SSL. SSL itself can
authenticate the client to the server if the client provides a
certificate, but it requires some PKI infrastructure setup.
We leave these SSL configurations as an exercise to the
reader with the hint the client certificate authentication is
done with Apache’s SSLVerifyClient directive.

WebDAV Methods in Detail
We will now describe the WebDAV requests and
responses. Instead of capturing the communication
between a client and a server we will programmatically
construct the requests, send them to the server and
parse the responses. We will use Python.

Options
A client sends an OPTIONS request to find out the DAV
capabilities of the server. The latter describes them with
some response’s headers like DAV. Here is a complete
program that sends an OPTIONS request: see Listing 3.

In main() we parse the command line options and
arguments where -u contains the username and the url
is the first argument after the options. If the user option
is provided we prompt for a password. We extract the
host and the port for the url and open a HTTPConnection. In
send_request we populate a dictionary with headers. For the
Authorization header we encode with Base64 the username
and the password. Then we send the request using request
function of the connection object. The function takes the
path of the url, the body of the request and the headers.
In the case of OPTIONS the body is empty, that is None. Next
we obtain the response from the connection and we return

Listing 13. Lock-Modify-Unlock scenario

$./davlock.py -u davuser http://localhost/davtest/

davtest.txt

$./davput.py -u davuser -f davtest.txt \

 -l "opaquelocktoken:c173aa69-8db8-46bd-b1f4-

611f4afc978b" \

 http://localhost/davtest/davtest.txt

$./davunlock.py -u davuser

 -l opaquelocktoken:c173aa69-8db8-46bd-b1f4-611f4afc978b

\

 http://localhost/davtest/davtest.txt

Listing 14. PROPFIND request

def send_request(conn, urlcomps, user, password,

 depth='0',

 properties=[]):

 headers = {'Host' : urlcomps.hostname,

 'User-Agent' : sys.argv[0],

 'Depth':depth}

 auth = base64.b64encode('%s:%s' % (user, password))

 headers['Authorization'] = 'Basic %s' % auth

 body = construct_body(properties)

 logger.debug('Request headers: %s' % headers)

 logger.debug('Request body: %s' % body)

 conn.request('PROPFIND', urlcomps.path, body, headers)

 response = conn.getresponse()

 return response

def construct_body(props):

 if len(props) == 0:

 return None

 dom = getDOMImplementation()

 bodydoc = dom.createDocument('DAV:', 'D:propfind',

None)

 propfindel = bodydoc.documentElement

 propfindel.setAttribute('xmlns:D', 'DAV:')

 propel = bodydoc.createElementNS('DAV:', 'D:prop')

 propfindel.appendChild(propel)

 for prop in props:

 el = bodydoc.createElement(prop)

 propel.appendChild(el)

 body = bodydoc.toxml('UTF-8')

 return body

11/2010 36

HOW TO’S Introduction to WebDAV

www.bsdmag.org 37

Listing 15. PROPFIND response

def handle_response(response):

 logger.debug('Response status: %s %s' %

 (response.status, response.reason))

 logger.debug('Response headers: %s', response.getheaders())

 data = response.read()

 logger.debug('Response body: %s', data)

 if response.status == httplib.MULTI_STATUS:

 parse_xml_body(data)

 else:

 logger.error('Response status: %s %s' %

 (response.status, response.reason))

def parse_xml_body(data):

 dom = parseString(data)

 multistatusel = dom.documentElement

 responses = multistatusel.getElementsByTagNameNS('DAV:', 'response')

 for responseel in responses:

 hrefel = responseel.getElementsByTagNameNS('DAV:', 'href')[0]

 href = hrefel.firstChild.data

 logger.info('Properties for %s' % href)

 propstatels = responseel.getElementsByTagNameNS('DAV:', 'propstat')

 for propstatel in propstatels:

 statusel = propstatel.getElementsByTagNameNS('DAV:', 'status')[0]

 status = statusel.firstChild.data

 propel = propstatel.getElementsByTagNameNS('DAV:', 'prop')[0]

 props = propel.childNodes

 if status.find(str(httplib.OK)) > -1:

 for prop in props:

 if prop.nodeType == Node.ELEMENT_NODE:

 if prop.hasChildNodes():

 r = []

 for node in prop.childNodes:

 s = node.toxml(dom.encoding).strip()

 r.append(s)

 logger.info('%s = %s' % (prop.nodeName, ''.join(r)))

 else:

 logger.info('%s' % prop.nodeName)

 elif status.find(str(httplib.NOT_FOUND)) > -1:

 for prop in props:

 if prop.nodeType == Node.ELEMENT_NODE:

 logger.warn('Property %s not found' % prop.nodeName)

 else:

 for prop in props:

 if prop.nodeType == Node.ELEMENT_NODE:

 logger.error('%s %s', prop.nodeName, status)

11/2010 38

HOW TO’S Introduction to WebDAV

www.bsdmag.org 39

it. The function handle_response parses the response. In
our case we check for the presence of the DAV header that
indicates WebDAV compliance. There are three classes of
compliance numbered 1, 2, and 3. Class 2 means that the
resource supports locking. The exact definitions are given in
RFC 4918 and RFC 2518. We also show the Allow header
and it contains the WebDAV methods.

Listing 4 shows these headers for the dav-enabled
resource http://localhost/davtest/. For a non-dav resource,
the DAV header is missing and the allowed methods header
does not contain the DAV methods:

$./davoptions.py http://localhost/

Sending OPTIONS request to http://localhost/

Allowed methods: GET,HEAD,POST,OPTIONS,TRACE

For all other examples main() is similar – it opens the
connection, calls send _ request and handle _ response and
closes the connection. We will show only send _ request
and handle _ response methods for the other examples. We
also log the headers and the body for each request and
each response.

PUT
PUT is used to upload a non-collection, that is a non-
directory resource. Its behavior is undefined when applied
to an existing collections. If we want to create a new
collection we use MKCOL. Listing 5 shows how to construct
a PUT request.

The body of the PUT request becomes the contents of the
server resource. If it does not exists, it will be created; if it
exists it will be replaced. In our case we read the body from
a file. We also provide an optional lock token. If the resource
is not locked we do not need it, but if it is locked we have to
provide a valid token. We may also supply a content type
in the request headers. If the we do not, the server may
choose a content type and assign it to the resource.

The successful responses for PUT are 201 and 204 and
handle_response in Listing 6 checks for them.

If http://localhost/davtest/davtest.txt does not exist we
can create it with a PUT request:

$ echo 'test dav' > davtest.txt

$./davput.py -u davuser -f davtest.txt \

 http://localhost/davtest/davtest.txt

Password:

Created the resource

We can modify it with another PUT request:

$ echo 'changed' >> davtest.txt

$./davput.py -u davuser -f davtest.txt \

 http://localhost/davtest/davtest.txt

Password:

Replaced the resource

Using PUT we can upload not-only static content, but also
scripts like PHP or Python.

MKCOL
An MKCOL request creates a collection resource
at the given URI. It may contain a body, but
the behavior in that case is undefined. It may
optionally present a lock token, if the parent
collection is locked (we will describe locking
later). Listing 7 shows how to construct an
MKCOL request.

The response returns the status code for the
operation. The successful one is 201 Created.
405 Method Not Allowed means that the directory
already exists – the method is allowed only for
non-existing collections; 409 Conflict means that
a parent collection does not exist; 423 Locked
means that a parent collection is locked and
the client has not provided the lock token; 207
Multistatus means that the request was related
to several resource and they returned different
status codes in the XML body of the response: see
Listing 8. If http://localhost/davtest/dir1/ does not
exist we create it with:

Listing 16. PROPFIND response and the properties it contains

$./davpropfind.py -u davuser http://localhost/davtest/davtest.txt

Password:

Properties for /davtest/davtest.txt

lp1:resourcetype

lp1:creationdate = 2010-12-04T05:37:01Z

lp1:getcontentlength = 17

lp1:getlastmodified = Sat, 04 Dec 2010 05:37:01 GMT

lp1:getetag = "2c3022-11-4968f0b4e1940"

lp2:executable = F

D:supportedlock = <D:lockentry>

<D:lockscope><D:exclusive/></D:lockscope>

<D:locktype><D:write/></D:locktype>

</D:lockentry><D:lockentry>

<D:lockscope><D:shared/></D:lockscope>

<D:locktype><D:write/></D:locktype>

</D:lockentry>

D:lockdiscovery

D:getcontenttype = text/plain

11/2010 38

HOW TO’S Introduction to WebDAV

www.bsdmag.org 39

./davmkcol.py -u davuser http://localhost/davtest/dir1/

Password:

Created the collection

A second attempt to recreate it results with an error:

$./davmkcol.py -u davuser http://localhost/davtest/dir1/

Password:

The resource already exists

An attempt to create a collection whose parent
collection does not exist is also an error:

$./davmkcol.py -u davuser http://localhost/

davtest/bogus/dir/

Password:

The parent collection does not exist

Lock
LOCK is used to lock a resource. There are two
types of locks – exclusive and shared. The
exclusive one allows access only to the holder
of the lock token. A shared one does not restrict
access but simply informs that someone else
may be working on this resource. We will
demonstrate exclusive locks. When a client
locks a resource, the server returns a lock token
to it. Any requests that modify the resource
must provide the lock token to succeed. If the
client wants to extend the lock of the resource,
it sends another LOCK request to it with the lock
token returned from the previous one.

The bodies of the LOCK request and the LOCK
response can be XML documents. Listing 9
shows how to use xml.dom.minidom to generate
the request’s XML body.

Several headers are important for this request.
The Timeout header contains the client’s desired
period of the lock; after that period the lock
will expire even if the resource is not explicitly
unlocked. The server may not honor this header.
The Depth header is ignored if the resource to be
locked is not a collection. If it is a collection the
Depth header specifies how deep will be the lock:
if Infinity the collection and its children including
the subcollections’s children will be locked; if 0,
only the collection without its children will be
protected by the lock.

The response comes with a Timeout header
that contains the lock’s period assigned by the
server. The body of the response is in XML and

one of its nodes contains the lock token. The server will
require the lock token in the If header of any subsequent
requests that modify that resource.

We will illustrate all that headers and XML machinery
with a couple of examples.Let us assume that http://
localhost/davtest/davtest.txt exists and we want to lock it
in order to update it: see Listing 10.

The resource is locked and the server returns its lock token.
Any attempt to modify it without the lock token will fail:

Listing 17. PROPPATCH request

def send_request(conn, urlcomps, user, password,

 toset={}, toremove=[]):

 headers = {'Host' : urlcomps.hostname,

 'User-Agent' : sys.argv[0]}

 auth = base64.b64encode('%s:%s' % (user, password))

 headers['Authorization'] = 'Basic %s' % auth

 body = construct_body(toset, toremove)

 logger.debug('Request headers: %s' % headers)

 logger.debug('Request body: %s' % body)

 conn.request('PROPPATCH', urlcomps.path, body, headers)

 response = conn.getresponse()

 return response

def construct_body(toset, toremove):

 dom = getDOMImplementation()

 bodydoc = dom.createDocument('DAV:', 'D:propertyupdate', None)

 propertyupdateel = bodydoc.documentElement

 propertyupdateel.setAttribute('xmlns:D', 'DAV:')

 if len(toset) > 0:

 setel = bodydoc.createElementNS('DAV:', 'D:set')

 propertyupdateel.appendChild(setel)

 propel = bodydoc.createElementNS('DAV:', 'D:prop')

 setel.appendChild(propel)

 for key in toset:

 keyel = bodydoc.createElement(key)

 valueel = bodydoc.createTextNode(toset[key])

 keyel.appendChild(valueel)

 propel.appendChild(keyel)

 if len(toremove) > 0:

 removeel = bodydoc.createElementNS('DAV:', 'D:remove')

 propertyupdateel.appendChild(removeel)

 propel = bodydoc.createElementNS('DAV:', 'D:prop')

 removeel.appendChild(propel)

 for key in toremove:

 keyel = bodydoc.createElement(key)

 propel.appendChild(keyel)

 body = bodydoc.toxml('UTF-8')

 return body

11/2010 40

HOW TO’S Introduction to WebDAV

www.bsdmag.org 41

$./davput.py -u davuser -f davtest.txt \

 http://localhost/davtest/davtest.txt

Password:

Failed to put the resource; status 423 Locked

Now let’s provide the lock token:

$./davput.py -u davuser \

 -l opaquelocktoken:7e083e8c-0fb8-4010-8571-b3ce86b1b4cb

 -f davtest.txt http://localhost/davtest/davtest.txt

Password:

Replaced the resource

This showed how to lock a non-collection resource.
If we lock a collection with depth infinity we can’t add

new members to it without the locktoken: see Listng 11.
Finally, we can refresh the lock on a resource, if we send
a LOCK request with the current lock in the If header.

UNLOCK
The UNLOCK method unlocks a locked resource. It provides
the lock token in its If header. 204 No Content is the
successful status code for the response: see Listing 12.

We can now implement a lock-modify-unlock scenario:
see Listing 13.

Propfind
The PROPFIND method retrieves the resources’s metadata. It
consists of properties with names and values. The method
can retrieve all properties with their values, a specific set of

Listing 18. PROPPATCH response

def handle_response(response):

 data = response.read()

 if response.status == httplib.MULTI_STATUS:

 parse_xml_body(data)

 else:

 logger.error('Response status: %s %s' %

 (response.status, response.reason))

def parse_xml_body(data):

 dom = parseString(data)

 multistatusel = dom.documentElement

 responses = multistatusel.getElementsByTagNameNS('DAV:', 'response')

 for responseel in responses:

 hrefel = responseel.getElementsByTagNameNS('DAV:', 'href')[0]

 href = hrefel.firstChild.data

 logger.info('Properties for %s' % href)

 propstatels = responseel.getElementsByTagNameNS('DAV:', 'propstat')

 for propstatel in propstatels:

 statusel = propstatel.getElementsByTagNameNS('DAV:', 'status')[0]

 status = statusel.firstChild.data

 propel = propstatel.getElementsByTagNameNS('DAV:', 'prop')[0]

 props = propel.childNodes

 if status.find(str(httplib.OK)) > -1:

 for prop in props:

 if prop.nodeType == Node.ELEMENT_NODE:

 logger.info('Operation on %s succeeded' % prop.nodeName)

 else:

 descriptionel = propstatel.getElementsByTagNameNS(

 'DAV:', 'responsedescription')[0]

 description = descriptionel.firstChild.data.strip()

 for prop in props:

 if prop.nodeType == Node.ELEMENT_NODE:

 logger.error('%s %s' % (prop.nodeName, description))

11/2010 40

HOW TO’S Introduction to WebDAV

www.bsdmag.org 41

properties or only the properties’ names (see Listing 14). If
we send a PROPFIND request with an empty body, the server
returns all the properties. If we send an XML body with
names of the properties, it returns only them. In both case
we parse the body of the response in order to obtain them.
The response’s status is 207 Multistatus, because some
properties may be fetched and some not (see Listing 15).

WebDAV itself uses properties for its internal working.
For example, it uses resourcetype to describe if a
resource is a collection or not, executable if the resource
is executable; supportedlock to describe what locks are
supported: see Listing 16.

The resourcetype is empty, so the resource is not a
collection. The collections give that property a value:

$./davpropfind.py -u davuser http://localhost/davtest/

Password:

lp1:resourcetype = <D:collection/>

Some of those properties can be changed and some
cannnot be changed. For example, we cannot modify
resourcetype. We can modify executable and this has an
interesting application.

Apache Httpd has an option XBitHack and when it is
turned on, the Server Side Includes in a file are expanded
if it is executable. Setting the executable property is one
way to set the x bit on a file.

The PROPFIND method support the Depth header with
values 0, 1 and Infinity.

A request with depth 0 retrieves the collection’s
properties without its members’ ones, depth 1 – the
collection’s properties and its children’s but without the
properties of the subcollections, depth infinity recursively
retrieves them for the whole tree:

$./davpropfind.py -u davuser -d 0 http://localhost/davtest/

$./davpropfind.py -u davuser -d 1 http://localhost/davtest/

$./davpropfind.py -u davuser -d Infinity http://localhost/davtest/

Some servers may reject PROPFIND request with depth
infinity, because the operation can be computationally
heavy. In the case of Apache, we can allow such request
with the DavDepthInfinity directive.

Proppatch
The PROPPATCH method sets or remove properties from
resources. Its XML body contains the properties and their
values it will set, and the properties’ names it will delete:
see Listing 17.

The response’s status code can be 207 Multistatus and
its XML body contains the results from the operations.
If there is an error for specific properties it provides a
description: see Listing 18.

We set a single property and retrieve it:

$./davproppatch.py -u davuser -s prop=value http://

localhost/davtest/

$./davpropfind.py -u davuser -p prop htp://localhost/davtest/

Listing 20. COPY/MOVE request

def send_request(conn, srccomps, user, password, dest,

 overwrite='F',

 depth='0'):

 headers = {'Host' : srccomps.hostname,

 'User-Agent' : sys.argv[0],

 'Overwrite' : overwrite,

 'Destination' : dest,

 'Depth' : depth}

 auth = base64.b64encode('%s:%s' % (user, password))

 headers['Authorization'] = 'Basic %s' % auth

 body = None

 logger.debug('Request headers: %s' % headers)

 logger.debug('Request body: %s' % body)

 conn.request('MOVE', srccomps.path, body, headers)

 response = conn.getresponse()

 return response

Listing 19. Setting deleting and listing properties

$./davproppatch.py -u davuser -s prop=value http:

//localhost/davtest/

$./davproppatch.py -u davuser -s prop1=value1 -s

prop2=value2 -r prop \

 http://localhost/davtest/

Password:

Properties for /davtest

Operation on prop1 succeeded

Operation on prop2 succeeded

Operation on prop succeeded

$./davpropfind.py -u davuser -p prop1 -p prop2 -p prop \

 htp://localhost/davtest/

Password:

Properties for /davtest/

prop1 = value1

prop2 = value2

Property prop not found

11/2010 42

HOW TO’S

Password:

Properties for /davtest/

prop = value

Now we will delete that property and set two new in one
request: see Listing 19.

The method PROPPATCH can be used to assign ownership
or authorship:

$./davproppatch.py -u davuser -s author=davuser

http://localhost/davtest/

$./davpropfind.py -u davuser -p author http://localhost/davtest/

Password:

Properties for /davtest/

author = davuser

The values of the properties can be custom XML
documents. To prevent name clashing you should use
xml namespaces in this case.

COPY and MOVE
The methods COPY and MOVE copy or
move a resource. Their requests
are relatively simple. They accept
the Depth header if they act on a
collection, the Overwrite header that
specifies whether to overwrite the
destination if it exists; the Destination
header specifies the new location of
the resource. The Request-URI is the
source. The methods send no body:
see Listing 20.

The COPY request is the same except
the line:

 conn.request('COPY', srccomps.path,

body, headers)

The successful response status
codes are 201 Created and 204
No Content. 207 Multistatus is also
possible if the request acted on a
collection and some of the operations
succeed and some fail: see
Listing 21.

This concludes the overview of the
WebDAV methods. It covered the
basic operations, but omits some
details as the scopes of the locks and
lock discovery properties.

Interoperability
Our experience shows that the dav clients and servers
integrate well between each other. Both parties
sometimes have to work around some idiosyncracies of
the other side. As a whole the protocol is well-defined and
it is easy to comply with it. Of course, different webdav
products are at different level of maturity so you should
evaluate them before production use. There is a test
suite called litmus that checks if a server is compatible
with the WebDAV RFCs.

IVAN „RAMBIUS” IVANOV
Ivan „Rambius” Ivanov is a Bulgarian software developer currently
based in New York and a member of NYC BSD User Group. He
has implememented a WebDAV-based software repository with
dependenc management and deployment tracking.

Listing 21. COPY/MOVE response

def handle_response(response):

 data = response.read()

 if response.status == httplib.CREATED:

 logger.info('The source was copied to the destination')

 elif response.status == httplib.NO_CONTENT:

 logger.info('The source overwrote the destination')

 elif response.status == httplib.MULTI_STATUS:

 parse_xml_body(data)

 else:

 logger.error('%s %s' %

 (response.status, response.reason))

def parse_xml_data(data):

 dom = parseString(data)

 multistatusel = dom.documentElement

 responses = multistatusel.getElementsByTagNameNS('DAV:', 'response')

 for responseel in responses:

 hrefel = responseel.getElementsByTagNameNS('DAV:', 'href')[0]

 href = hrefel.firstChild.data

 statusel = responseel.getElementsByTagNameNS('DAV:', 'status')[0]

 status = statusel.firstChild.data

 if (status.find(str(httplib.OK)) > -1) or

 (status.find(str(httplib.CREATED)) > -1):

 logger.info('Operation on %s succeeded', href)

 else:

 errorel = responseel.getElementsByTagNameNS('DAV:', 'error')[0]

 error = errorel.firstChild.data

 logger.error('%s %s %s', href, status, error)

About The FreeNAS Project:
FreeNAS is an embedded open source NAS (Network-Atta-
ched Storage) distribution based on FreeBSD that enables safe
and reliable data storage while also conserving disk space. Fre-
eNAS was originally created by Olivier Cochard-Labbe in Octo-
ber of 2005. In January of 2010 its development was taken over
by iXsystems, Inc. FreeNAS 8 is currently in the beta phase and
project developers are looking to the community for feedback
and assistance with bug testing before the �nal release.

iXsystems Releases FreeNAS 8 Beta
Community feedback sought before final release

FreeNAS–an Open Source Storage Platform based on
FreeBSD–supports sharing across Windows, Apple, and
UNIX-like systems. Both home and business users can
share media across an entire network. Other features
include FTP, data replication, iSCSI, and support for
Apple’s Time Machine. The current FreeNAS Beta release
is now available for testing and can be downloaded from
http://sourceforge.net/projects/freenas/files/. The project
welcomes community feedback to improve the product
for final release.

FreeNAS can be installed and configured with ease
using its new web interface. Users can store, access,
and manage data because the data resides on the
user’s private network. iXsystems has replaced the
existing FreeNAS interface (based on m0n0wall) with
the Python Django framework, whose modular nature
easily integrates third-party software within the FreeNAS
interface. Ajax technology provided by the Dojo toolkit
enhances the user experience by providing real-time
feedback.

„The new FreeNAS makes it easier to upgrade, back up,
or restore, with the system taking care of all the details.

FreeNAS makes running a NAS box simple and easy,”
says Warner Losh, Director of FreeBSD Development at
iXsystems.

FreeNAS 8 Beta includes ZFS, which supports high
storage capacities and integrates file systems and volume
management into a single piece of software. One benefit of
ZFS is System Snapshots, in which numerous snapshots
of data are taken and used to restore lost or deleted
files. Future versions of FreeNAS will include other ZFS
benefits such as De-Duplication, which conserves disk
space by sending a pointer to the location of the original
file for any replicated data.

The base of the system has been upgraded to FreeBSD
8.1-RELEASE. Asynchronous IO has been enabled in
Samba 3.5 to increase performance over previous versions.
FreeNAS now uses FreeBSD’s rc.d configuration and stores
all system states in a sqlite3 database. The build process
takes advantage of NanoBSD, a trimmed down version of
FreeBSD with added enhancements. In previous versions,
FreeNAS used many non-standard components that inhibited
updates to FreeBSD. The rewrite ensures that FreeNAS can
quickly and easily stay up to date with FreeBSD.

San Jose, CA (PRWEB) November 19, 2010

About iXsystems, Inc.:
iXsystems is the all-around FreeBSD company that builds Fre-
eBSD-certi�ed servers and storage solutions, runs the FreeBSD
Mall, and is the corporate sponsor of the PC-BSD Project. iXsys-
tems is an employee-owned and-operated, open source-cen-
tric, customer focused organization, dedicated to providing
the highest quality built-to-order enterprise rackmount server
solutions, pre-con�gured server appliances, and scalable sto-
rage solutions to our customers around the globe.

11/2010 44

HOW TO’S Managing software with NetBSD’s pkgsrc packaging system

www.bsdmag.org 45

Supported operating systems include Solaris, HP-
UX, Linux (in all it’s incarnations), FreeBSD,
MacOS, OpenBSD, NetBSD, AIX, IRIX, OSF/1,

QNX, and DragonFlyBSD. NetBSD and DragonFlyBSD
use it as their native package management systems.

 As a Systems/Site administrator, I’ve personally used
pkgsrc on NetBSD, HP-UX (where I did some of the porting/
development of the pkgsrc support for HP-UX), Linux (Debian)
and FreeBSD. pkgsrc is the packaging system of preference
because of it’s uniform dependency handling, and it’s uniform
interface for package installation and management. It is easy
to boot strap on a non-NetBSD host (and non-NetBSD also
includes NetBSD versions prior to NetBSD 4.0). pkgsrc
provides mechanisms for building packages from source
(the primary interface) as well as building binary distributions.
pkgsrc also includes mechanisms for controlling the features
desired and used by individual packages, as well as insuring
a tightly controlled dependency tree. (no discovering some
randomly installed piece of software accidently became a
runtime dependency.)

Why choose pkgsrc over an operating system’s provided
package management system? pkgsrc tries to follow
the latest releases of supported software, making them
available in a timely fashion. It also provides tools to be
able to upgrade the software once installed in a relatively
painless fashion. (however, no upgrade between major
versions of software is going to be entirely painless, sadly.)

pkgsrc also supports building as/for an individual user,
within a users home directory. It is a wonderful way to
experiment with pkgsrc on a system where you don’t have
super-user access. pkgsrc can build its packages as an
unprivileged user, needing only super-user access for
final installation onto the system (if not installing into the
users home directory.)

pkgsrc provides quarterly stable releases, intended for
production use, to minimize the packaging churn on stable
production systems. The stable releases are named after
their tags in the pkgsrc CVS repository. They are named in
the fashion of pkgsrc-<year>Q<quarter>, where <quarter> is the
number of the quarter just ended at the time of release. Only
critical fixes and changes get brought into the stable release.

So, after all the promotion, lets get to using pkgsrc for
package management! We’ll start off by down loading
the current stable pkgsrc tar-ball (pkgsrc-2010Q3 at the
time of writing), boot strapping it on a non-NetBSD host
(FreeBSD), and then proceed to building and installing
packages. Off we go!

Downloading the pkgsrc tar archive
Lets start by downloading the current tar archive for the
chosen pkgsrc stable branch. The URL for this archive is:
ftp://ftp.pkgsrc.org/pub/pkgsrc/pkgsrc-2010Q3/pkgsrc.tar.gz
(and it is available via http as well, my habit is to use ftp out
of preference.)

Managing software

pkgsrc is NetBSD’s package management system. But it
supports far more than just NetBSD. At last count, over 11
distinct operating systems were supported by pkgsrc.

What you will learn…
• How to boot strap pkgsrc
• How configure and build packages using pkgsrc
• upgrading packages using pkgsrc

What you should know…
• Basic UNIX commands – tar, your shell, ftp
• How to download files from the internet

with NetBSD’s pkgsrc packaging system

11/2010 44

HOW TO’S Managing software with NetBSD’s pkgsrc packaging system

www.bsdmag.org 45

Change directories into the bootstrap directory, and you
will see the files/directories shown in Listing 2.

Reading the general README file, and the README
file for your operating system can be very helpful. I
would strongly suggest taking a break and reading them
now, even though I’m going to give you the step by step
process in this article.

In the instance of our FreeBSD installation, we’re going
to use it as a replacement for the FreeBSD packaging
system, so we’ll need to be root to do the boot strap.
We’ll also want to remove/rename the system provided
packaging tools, to reduce the possibility of conflict with
the pkgsrc provided tools. We’ll start by renaming the
system tools. To do so, we’ll need to become super-user,
and execute the following commands:

 # mv /usr/sbin/pkg_add /usr/sbin/pkg_add-freebsd

 # mv /usr/sbin/pkg_create /usr/sbin/pkg_create-freebsd

 # mv /usr/sbin/pkg_delete /usr/sbin/pkg_delete-freebsd

 v# mv /usr/sbin/pkg_info /usr/sbin/pkg_info-freebsd

 # mv /usr/sbin/pkg_updating /usr/sbin/pkg_updating-freebsd

 # mv /usr/sbin/pkg_version /usr/sbin/pkg_version-freebsd

and optionally remove the execute bits from the programs:

 # chmod a-x /usr/sbin/pkg_*

For our FreeBSD bootstrap, we’re going to use the
following command line. The –pkgdbdir needs to be set,

After a few minutes, you should have the pkgsrc tar-
ball in your current working directory. (of course, cvs
can also be used to grab the stable branch, just use the
tag name in the cvs command line. The repository is at
anoncvs.netbsd.org:/cvsroot, the module is pkgsrc.)

 Once you’ve downloaded the pkgsrc tar-ball, time to
extract. Pick your favorite work directory, and extract the
tar-ball using the standard command:

 tar xzf <path to>/pkgsrc.tar.gz

If your tar doesn’t understand the z option, (as might be
the case on AIX, HP-UX or Solaris), you’ll have to use
gzcat to uncompress the archive, and then pipe that into
tar. (hopefully, you know how to do that.)

Bootstrapping
Once you’ve got the tar archive extracted, you need to
boot strap the pkgsrc package management tools. They
are make, nbftp, pkg_add, pkg_info, pkg_admin, and pkg_delete.
Other tools may be built as part of bootstrapping if suitable
tools don’t already exist on your system.

Of course, if you’re running a recent, supported version
of NetBSD, this boot strapping is not required.

The only tools required of the host system are a
working C compiler (supporting ANSI C) and a working,
basic make(1) program. To start bootstrapping, change
directory to top level pkgsrc directory. Within you’ll find the
subdirectories shown in Listing 1.

Listing 1. Top level pkgsrc directory

 CVS/ chat/ emulators/ lang/ net/ shells/

 Makefile comms/ filesystems/ licenses/ news/ sysutils/

 README converters/ finance/ mail/ packages/ templates/

 archivers/ cross/ fonts/ math/ parallel/ textproc/

 audio/ databases/ games/ mbone/ pkglocate* time/

 benchmarks/ devel/ geography/ meta-pkgs/ pkgtools/ wm/

 biology/ distfiles/ graphics/ misc/ print/ www/

 bootstrap/ doc/ ham/ mk/ regress/ x11/

 cad/ editors/ inputmethod/ multimedia/ security/

Listing 2. Contents of the pkgsrc/bootstrap directory

 CVS/ README.Haiku README.MacOSX cleanup*

 README README.IRIX README.OSF1 macpkg.pmproj.in

 README.AIX README.IRIX5.3 README.OpenBSD testbootstrap*

 README.FreeBSD README.Interix README.Solaris

 README.HPUX README.Linux bootstrap*

11/2010 46

HOW TO’S Managing software with NetBSD’s pkgsrc packaging system

www.bsdmag.org 47

since the FreeBSD packaging tools want to use /var/db/
pkg for their packaging database.

 # ./bootstrap --pkgdbdir /usr/pkg/db

The bootstrap command will proceed to build the
bmake, and the needed support programs to provide the
environment that pkgsrc expects.

mk.conf
At the end of the build, you should have seen a message
about /usr/pkg/etc/mk.conf containing various settings for
building pkgsrc packages. mk.conf is used to define the list

of licenses you accept (the standard open source licenses
are accepted by default, but some software packages
have more restrictive licenses), options for packages, and
other items of interest.

 The two most interesting items are ACCEPTABLE_LICENSES,
which defines the allowed licenses, and PKG_DEFAULT_

OPTIONS, which defines the list of options to apply to all
packages that support them.

mk.conf can also define per package options using the
PKG_OPTIONS.<pkgname> syntax. Individual packages may
have more options than the standard list.

Other options include X11_TYPE (set to either native or
modular, aka from pkgsrc), USE_DESTDIR=yes, which causes

Listing 3. List of installed packages after installing sudo

fbsd-> pkg_info

bootstrap-mk-files-20090807nb2 *.mk files for the bootstrap bmake utility

bmake-20100808 Portable (autoconf) version of NetBSD 'make' utility

pkg_install-20100915 Package management and administration tools for pkgsrc

digest-20080510 Message digest wrapper utility

tnftp-20070806 The enhanced FTP client in NetBSD

f2c-20090411nb5 Fortran to C compiler including a script to emulate f77

libtool-base-2.2.6bnb4 Generic shared library support script (the script itself)

sudo-1.7.4p4nb1 Allow others to run commands as root

fbsd->

Listing 4. pkg_info(1) output for bmake

fbsd-> pkg_info bmake

Information for bmake-20100808:

*** PACKAGE MAY NOT BE DELETED ***

Comment:

Portable (autoconf) version of NetBSD 'make' utility

Requires:

bootstrap-mk-files-[0-9]*

Description:

bmake is a portable version of NetBSD's make(1) utility,

conveniently packaged using a configure script, for other environments

which may lack NetBSD's libraries, regular expression code, etc.

Homepage:

http://www.crufty.net/help/sjg/bmake.html

*** PACKAGE MAY NOT BE DELETED ***

fbsd->

11/2010 46

HOW TO’S Managing software with NetBSD’s pkgsrc packaging system

www.bsdmag.org 47

packages to build and package into subdirectories of the
build tree, rather than directly into the system directories.
Useful entries are WORKOBJDIR, DISTDIR, and PACKAGES, which
tell the pkgsrc build infrastructure where to build software,
where to stash the distribution archives downloaded from
the Internet, and where to put the final packaged packages,
respectively. WORKOBJDIR is usually within the package
directory, DISTDIR is ./distfiles within the pkgsrc top level
directory, and PACKAGES is ./packages within the pkgsrc top
level directory.

Building our first package
Now that we’ve got the software bootstrapped, we can
move to building packages. The first package I would
recommend building is security/sudo. It is quick and
simple. Use the following command:

 bmake update

Well, it will once you add /usr/pkg/bin to your path. (yes, I
forgot to do that while writing this.)

Our freshly installed bmake will proceed to download
the sudo sources, build and install any dependencies
(in this case, pkgtools/digest), build sudo, and install

sudo. Once sudo is installed, you’ll want to configure it
using visudo. Make sure to list your non-privileged user
id! Having installed and configured sudo, you can now
add an additional feature to mk.conf, allowing the building
of packages unprivileged, but using sudo to do the
installation phase. The variable is SU_CMD, and you want to
set it like this:

 SU_CMD=sudo -u root sh -c

Otherwise, when building as an unprivileged user, you’ll
be prompted for the root password to install.

The Package Database
Now that we’ve bootstrapped, and installed sudo, lets
take a look at see what the package database looks like.
Use the following command:

 pkg_info

And you should get something like Listing 3.
For more details about any package, you use pkg_

info(1) followed by the package name (versions aren’t
required), and it will tell you a bit about the package. For

example, asking about bmake will return
Listing 4.

Building a package with options
Now, we’ve built a basic package, lets
move onto something a bit more complex,
a package with options. To determine if a
package has options, look for the file
options.mk in the pkgsrc package directory.
Nearly all packages that support options
have them defined in a file by that name.

Common, pkgsrc-wide, options are
inet6, ssl, cups, etc. The global options are
defined, with descriptions, in mk/defaults/
options.description in the pkgsrc tree.

For my own systems, I like to use the
following options as default:

 PKG_DEFAULT_OPTIONS=sasl tcpwrappers inet6

-hal cups -dbus ssl

Prefixing an option with a dash (-)
disables the option when it defaults to
on for a package. Myself, I dislike the
baggage that dbus and hald add to the
system, so I have them disabled by
default.

Listing 5. package options for net/wget

fbsd-> bmake show-options

Any of the following general options may be selected:

 idn Internationalized Domain Names (IDN) support.

 inet6 Enable support for IPv6.

 ssl Enable SSL support.

These options are enabled by default:

 idn ssl

These options are currently enabled:

 idn inet6 ssl

You can select which build options to use by setting PKG_DEFAULT_OPTIONS

or PKG_OPTIONS.wget.

fbsd->

Listing 6. Example pkg_chk -uq output

fbsd-> pkg_chk -uq

net/wget - wget-1.12nb1 < wget-1.12nb2

*** Unable to read PKGCHK_CONF

'/usr/home/eric/work/pkgsrc/pkgchk_update-fbsd.cirr.com..conf'

fbsd->

11/2010 48

HOW TO’S

I also like to make sure packages that can use SASL do
so, and those that can use IPv6 and SSL also do so.

A package that uses options, and that shouldn’t be too
controversial, is net/wget. It has options of idn, ssl, and
inet6. It defaults to using idn and ssl.

To see what options will be used by net/wget, change
to the net/wget directory, and enter the following
command:

 bmake show-options

You’ll get a response as seen in Listing 5.
If a different set of options is desired, edit /usr/pkg/etc/

mk.conf, and add an entry for wget, such as:

 PKG_OPTIONS.wget+= -idn -inet6

to remove the idn and inet6 options. FYI: PKG _ OPTIONS are
always added too using the += syntax in mk.conf. They
can also be modified on the command line by using the
following:

 bmake PKG_OPTIONS.wget=’-idn -inet6’ update

Building wget demonstrates the nature of pkgsrc’s
dependency build system. wget has the following direct
and indirect dependencies:

 archivers/pax

 devel/gettext-tools

 devel/gettext-lib

 converters/libiconv

 lang/perl

They were all automatically downloaded, built and
installed to support the build and installation of wget.

More Advanced Administration
So far, we’ve bootstrapped the pkgsrc system, and
installed a few packages. That’s easy, and nearly every
packaging system handles basic build and installation
well.

The hard part is upgrading packages once they’ve been
installed. There are a few tools that are provided as part
of pkgsrc that make upgrading packages easier. They are
pkgtools/pkg_chk and pkgtools/pkg_rolling-replace.

pkgtools/pkg_chk provides two major pieces of
functionality. The first is to build a predefined set of
packages from a configuration file. The configuration file
is formatted such that one file can be defined for all the
systems at a site, including per-system specializations.

The second piece of functionality is upgrading the installed
set of packages based on the extracted pkgsrc tree.

pkgtools/pkg_rolling-replace provides outstanding
functionality for rebuilding changed packages, with a
minimum window when the package being upgraded isn’t
installed. pkg_rolling-replace can also be used to make
sure any packages depending on the replaced package
are rebuilt, which is especially important in the case of API/
ABI changes (although the package maintainers attempt
to indicate changes in the API to the using packages by a
revision increment of all the using packages.)

pkgtools/pkg_chk can be used to list the packages that
may be out of date on the running system, verses the
pkgsrc source tree.

 pkg_chk -uq

will return something like Listing 6 identifying the out of
date packages.

pkg_chk -u will rebuild the out of date packages by
picking one of the out of date packages, un-installing it
and the packages it depends upon, and then building/
installing the updated package, and building/installing the
packages that depend upon it.

pkg_rolling-replace -u determines the list of packages to
be updated by calling pkg_chk -uq to generate the list, and
then builds each of the out of date, installs it, and then
rebuilds all packages that depend upon it. It does it in such
a way to minimize the time any package is unavailable on
a running system.

Wrapping up
Hopefully this article has provided a good overview of
pkgsrc, and how to use it to build from sources, on one
of the 11 supported operating systems. Our use of it
on FreeBSD, in place of FreeBSD’s native packaging
system demonstrates some of the flexibility available with
pkgsrc.

 pkgsrc, it’s not just for NetBSD!

ERIC SCHNOEBELEN
Eric Schnoebelen is a 25 year veteran of the UNIX wars, using
both System V and BSD derived systems. He’s spent more than
20 years working with and contributing to various open source
projects, such as NetBSD, sendmail, tcsh, and jabberd2. He
operates a UNIX consultancy, and a small, NetBSD powered
ISP. His preferred OS is NetBSD, which he has running on Alpha,
UltraSPARC, SPARC, amd64 and i386.

http://www.bsdmag.org

11/2010 50

Allocating Dynamic Memory with Confidence

www.bsdmag.org 51

Users will put up with occasional slowdowns and
crashes on a desktop computer, but devices are
held to a higher standard, especially when they are

part of a mission-critical system. Memory allocation is an
important factor for providing the necessary performance
and reliability on an embedded device.

On a general-purpose computer, well-designed ap-
plications allocate memory on-demand, so that each
application only uses as much memory as it needs at
any given time. If an application needs a large amount
of memory, the user is expected to stop using other
applications until it is finished.

Embedded devices are typically designed to perform
a fixed set of tasks. The user may not even realize that
there are anything like applications running on a device.
Devices that do not support virtual memory will simply
fail when memory is full. Even an unexpected drop in
performance can be frustrating, and in some cases
dangerous. For that reason, well-designed applications
on embedded systems often preallocate memory so that
performance is consistent and failure is prevented.

However, for complex applications it is not always
possible to predict all memory requirements in advance.
Instead, the application can be analyzed to determine its
worst-case memory consumption and allocate a buffer
of that size in advance. Such analysis can be difficult,
especially when starting from scratch.

Storing, organizing, and sharing data makes up a large
part of the memory requirements for an application.
A device application can use an embedded database
library to manage memory more effectively, by both
imposing bounds on memory usage and analyzing worst-
case behavior in a consistent way. The database library
can handle all the details of reading, writing, indexing,
and locking data within a predictable footprint, so that
the application’s own memory requirements are greatly
reduced.

Designing for Predictable Memory Usage
Reliable embedded devices depend on predictable
behavior. For memory allocation, this requires knowing how
much memory an application will need in the worst case,
and then finding ways to reduce that amount. To do this,
an application developer needs to follow a good memory
allocation strategy, measure memory consumption under
a variety of representative configurations, and analyze the
results.

Total memory consumption includes not only the
memory requested by the application, but also the
overhead of the dynamic memory allocator itself. Some
allocators are more susceptible to fragmentation than
others, so it is important to know what kind of allocator
the application is using. Most operating systems
use a general-purpose allocator that performs well

Allocating Dynamic
Memory with Confidence
Embedded software applications face many challenges
that are not present on desktop computers. A device with a
dedicated function is not generally regarded as a computer,
even if a significant part of it is software.

What you will learn…
• Why dynamic memory allocation is necessary but dangerous.
• Strategies to avoid memory fragmentation.
• How to determine worst-case memory consumption.

What you should know…
• Application development concepts.
• Memory management without garbage collection.

a
d

v
e

r
t

i
s

e
m

e
n

t

11/2010 50

Allocating Dynamic Memory with Confidence

www.bsdmag.org 51

the two-phase principle, so that memory requirements are
consistent and predictable.

ITTIA DB SQL also includes a built-in allocator that
can be enabled to restrict all database allocations to
preallocated segments of memory. The built-in memory
allocator has proven limits on memory fragmentation
overhead, and provides statistics so that worst-case
behavior can be measured for each database-driven
application.

Other statistics can also be collected, such as the
number of database resource handles opened by the
application and the number of locks used to provide safe,
efficient shared access. These provide additional insight
into application behavior, which can be used to reduce the
memory footprint.

Conclusion
Memory allocation behavior can have a significant impact
on the performance and reliability of an embedded device.
Extreme measures such allocating all memory statically at
compile-time are extremely restrictive, and not necessary
if developers are willing to apply some analysis. For
software libraries where the worst-case behavior is not
clearly defined, applications can run out of memory
unexpectedly even with a bounded memory allocator.
An embedded database that provides robust memory
management features, like ITTIA DB SQL, can be used to
limit and analyze the most dynamic allocations in a device
application.

on average, but that may badly fragment memory
at unexpected times. On such platforms, a bounded
allocator can be used in each application to limit
allocation overhead.

Memory Allocation Strategy
A useful strategy to avoid memory fragmentation is
two-phase allocation. Under this strategy, large and
long-term object are allocated first so that they are
guaranteed a place in memory. Small and short-lived
objects are allocated in the second phase because
they are less likely to fail even if memory is fragmented.
In this way, there is little risk that an allocation will fail
merely because no contiguous region of memory is large
enough.

Both the application code itself and any libraries that
allocate memory should apply this strategy. Otherwise,
the worst-case behavior of the application cannot be
predicted accurately. Even a bounded allocator cannot
provide any guarantees if an embedded library only
imposes soft limits on its allocation behavior.

Statistics Collection and Analysis
When measuring memory allocation behavior, the most

important statistics to collect are the largest amount of
memory allocated at any one time and the size of the
single largest allocation, including allocator overhead.
Other statistics may also be valuable for certain memory
allocators.

The amount of memory used by an application
usually depends on how it is configured and how it is
used. Statistics should be collected for several different
configurations that represent all of the extreme memory
use cases. The application should also be divided into
discrete operations that can be tested individually, so that
results can be calculated without simulating all possible
combinations.

By knowing an application’s total memory
consumption, it is possible to allocate a large enough
memory pool when an application is started to satisfy
all allocation requests for the life of the application.
Provided that operations run sequentially, one by one,
the memory consumption is defined as the largest
consumption of any individual operation. If operations
could overlap, the maximum memory consumption is
defined as a sum of all the operations that could be run
concurrently.

Managing Memory Effectively with ITTIA DB
ITTIA DB SQL is an embedded database library that is
specifically designed for devices and embedded systems.
For example, memory allocation in ITTIA DB SQL follows ITTIA DEVELOPMENT TEAM

a
d

v
e

r
t

i
s

e
m

e
n

t

http://www.IXsystems.com/BSDsupport

