
http://www.iXsystems.com

��
�������������������������������������
���

���������������
��
��

�������������

� ������������������������������������
��
�������������������������� �����������������������������������
������������������������������ ����������������������������������
���������������������������� ������������������������������
��
��������������������� ���
��� ��
��
�������������������� ����������������������� �������������������������������������
���������������������������� ��������� ������������������������������
�����������������������������������

������� ����������������������������

��
���
��
��
��
��
��������������������

���
��

��
��������������������������������������

��������

���������

����������

�������������
��������

http://www.iXsystems.com

��
�������������������������������������
���

���������������
��
��

�������������

� ������������������������������������
��
�������������������������� �����������������������������������
������������������������������ ����������������������������������
���������������������������� ������������������������������
��
��������������������� ���
��� ��
��
�������������������� ����������������������� �������������������������������������
���������������������������� ��������� ������������������������������
�����������������������������������

������� ����������������������������

��
���
��
��
��
��
��������������������

���
��

��
��������������������������������������

��������

���������

����������

�������������
��������

http://www.iXsystems.com

05/20114

CONTENTS

Zbigniew Puchciński
Editor in Chief

zbigniew.puchcinski@software.com.pl

Editor in Chief:
Zbigniew Puchciński

 zbigniew.puchcinski@software.com.pl

Contributing:
Michael Hernandez, Dru Lavigne, Justin C. Sherrill, Ian Darwin,
Bill Harris, Jared Barneck, Rob Somerville, Matthieu Bouthors,

James P. Howard II, Darrel Levitch, Sufyan bin Uzayr, Ryan Phillip

Proofreaders:
Corby Agid, Melanie Vonfange, Sander Reiche,

Christopher J. Umina

Special Thanks:
Denise Ebery, Matt Olander

Art Director:
Ireneusz Pogroszewski

DTP:
Ireneusz Pogroszewski

Senior Consultant/Publisher:
Paweł Marciniak pawel@software.com.pl

CEO:
Ewa Dudzic

ewa.dudzic@software.com.pl

Production Director:
Andrzej Kuca

andrzej.kuca@software.com.pl

Executive Ad Consultant:
Karolina Lesińska

karolina.lesinska@bsdmag.org

Advertising Sales:
Zbigniew Puchciński

zbigniew.puchcinski@software.com.pl

Publisher :
Software Press Sp. z o.o. SK

ul. Bokserska 1, 02-682 Warszawa
Poland

worldwide publishing
tel: 1 917 338 36 31
www.bsdmag.org

Software Press Sp z o.o. SK is looking for partners from all over
the world. If you are interested in cooperation with us, please

contact us via e-mail: editors@bsdmag.org

All trade marks presented in the magazine were used only for
informative purposes. All rights to trade marks presented in the

magazine are reserved by the companies which own them.

The editors use automatic DTP system

Mathematical formulas created by Design Science MathType™.

Here it is!

The May issue of BSD magazine is out and full of new
content. :)

We warm up with Michael Hernandez and his
Introduction to Z Shell followed by the Developers
Corner. There you will �nd Dru Lavigne’s article
about PC-BSD 9.0 Multiple Desktop Support, more
Dragon�yBSD news from Justin C. Sherrill (including
information about new Dragon�y 2.10) and an article
about „Evolution of an OpenBSD port” by Ian Darwin.
What will you �nd in this week How To’s?
Same as the last year in May, this month’s cover story
is related to Embedded BSD. Bill Harris presents his
work with using FreeBSD as the OS on Alix platform.
Jared Barneck will show how to simplify application
development on FreeBSD using Mono in the article of
the same title.
Next you will �nd the sixth and unfortunately the last
article from Rob Somerville’s Drupal series followed by
another Bill Harris How To: „Backups – Made Easy”.
In the end of this section we will read how to �ght
DDoS attacks using PF from an article written by
Matthieu Bouthors.
Then Darrel Levitch and James P. Howard II will show
us some tricks and Sufyan bin Uzayr will „compare”
BSD and GPL licences in the Let’s Talk section.
Before we close the issue we will hear more about
embedded software in Ryan Philips’ „Allocating
Dynamic Memory with Con�dence” article.

I hope you will �nd all these articles informative
and entertaining. Big thanks to all of our Authors,
proofreaders and betatesters – their work is what
makes this magazine better.

Thank you!

Contents

www.bsdmag.org 5

Backups – Made Easy – A fast solution
to a real problem
Bill Harris

When have to do a major Operating System or Application
upgrade, this script and server with big disks, will get the
job done.

Fighting DDoS Attacks with PF
Matthieu Bouthors

For a long time, Denial of Service attacks were disregarded, as
they were considered to be the work of script kiddies. Things
have changed, these attacks are now massively distributed in
order to be more efficient and have serious goals.

Tips & Tricks
The MacOS X Command Line
James P. Howard II

My wife thinks I bought my Mac laptop to use as a status
symbol. But every hacker knows I bought it because I
wanted a decent Unix laptop.

Implementing OpenSMTPD
Darrel Levitch

OpenSMTPD is one of the mail servers included with
OpenBSD. Configuring OpenSMTPD is more readily under-
stood and comparatively less complex than configuring
Sendmail.

Lets Talk
License Wars!
Sufyan bin Uzayr

When I sat down to brainstorm on this month’s article, I decided
to write about something out of the ordinary. Obviously, the
topic had to be related to BSD, yet, I was determined to touch
upon something that is a bit above than just being geeky.
Why? Simply to make BSD fanatics proud, and at the same
time show non-BSD fans how great the world of BSD is!

In business
Allocating Dynamic Memory with
Confidence
Ryan Phillip

Embedded software applications face many challenges
that are not present on desktop computers. A device with
a dedicated function is expected to perform that function
consistently, no matter how complex the task is at the software
level.

Get Started
Introduction to the Z Shell
Michael Hernandez

In this modern age of computing, we are offered many
choices with regard to how we might interact with our
machines.

Developers Corner
Supporting Multiple Desktops in PC-
BSD 9.0
Dru Lavigne

Beginning with version 9.0, PC-BSD will allow the
selection of multiple desktops during installation. This
article describes what changes were needed to allow for
multiple desktop support and how you can help the PC-
BSD project in this endeavour.

Dragonfly News
by Justin C. Sherrill

Evolution of an OpenBSD Port
Ian Darwin

In this article I’ll talk about the evolution of the OpenBSD
port of radicale (http://www.radicale.org/), a nice small,
simple CALDAV-based calendar server written in Python
by Guillaume Ayoub.

How To’s
FreeBSD & Alix – A pint sized install of
an Enterprise OS
Bill Harris

The embedded device or Single Board Computer (SBC)
market has for the most part, been dominated by variety
of Linux derivatives.

Mono (C# and the .NET Framework) on
FreeBSD
Jared Barneck

The .NET Framework and the C# language have simplified
the software development process in many ways.

Drupal on FreeBSD part 6
Rob Somerville

In this last article in the series on the Drupal Content
Management System, the author looks back at what has
been covered in previous 5 articles and shares his real
world experience with Drupal.

06

40

42

46

48

10

16

32

14

20

24

28

36

http://www.radicale.org/

05/2011 6

GET STARTED

www.bsdmag.org

We could use a mouse to point at pictures and
words in menus, or virtually press buttons on the
screen. We could even use our fingertips on touch-

sensitive screens to literally point at icons that represent what
we want the computer to do. For those who cannot or prefer
not to touch their machines, there is voice control available
on many platforms, and there is ongoing research being
conducted to implement methods of controlling computers
with only our minds! It’s astounding, really. These choices
aside, there are those of us who prefer the tactile response
and (usually) instant gratification provided by a command line
interface, or CLI. You may already be familiar with the CLI.
It’s generally available on any BSD, including my favorite
BSD derivative, Mac OS X. When using the CLI, you are
presented with a shell prompt which is happily waiting there
for your commands and willing to carry out your orders, but
what is the shell, really? And what can it do for you?

This article will give you a brief introduction to shells in
general, as well as introduce you to my favorite shell, the
Z shell, more commonly known as zsh. For those of you
who are new to the command line, all of the shell and
Unix history might not make too much sense. Don’t worry!
The relevance of these now ancient shells and systems
will become clearer soon enough. Understanding where
you’ve come from can help you understand where you’re
going. If you are already well versed in Unix history, this
entire article may be a rehash of things you already know.

If that’s the case, feel free to install zsh on your machine
and get started: you won’t need much help from me.

The term shell was introduced by Louis Pouzin. He
created the first command-line interpreter, RUNCOM, as
part of CTSS (The Compatible Time Sharing System) nearly
a decade before Unix was created. Pouzin also worked on
another time sharing system, named Multics (Multiplexed
Information and Computing Service), and the term shell was
coined to describe its command line interface. The first Unix
shell was the Thompson shell, which was introduced in 1971
along with the first implementation of Unix, a replacement for
Multics. According to Wikipedia, The U in Unix is rumored to
stand for uniplexed as opposed to the multiplexed of Multics,
further underscoring the designers’ rejections of Multics’
complexity in favor of a more straightforward and workable
approach for smaller computers. Ken Thompson’s shell
(named sh) was quite limited by today’s standards, but did
include Input/Output redirection, among other basic features.
People who worked with Unix had started to use it (and
therefore Thompson’s shell) for application development and
scripting, and some began to find themselves constrained by
its minimalism. In the mid 1970’s, the Thompson shell was
replaced by a shell written by Stephen Bourne and John
Mashey, now known as the Bourne Shell. The Bourne Shell
was a marked improvement from the original shell, because
it added features which enabled it to be a fully programmable
scripting language, as well as serve as an interface to the

Introduction to the
Z Shell
In this modern age of computing, we are offered many
choices with regard to how we might interact with our
machines.

What you should know…
• A computer, preferably a BSD machine, but any will do.
• A means to install zsh on your local machine, or Internet access

to sign up for a free shell account.

What you will learn…
• Some Unix and shell history.
• What the Z Shell (zsh) is.
• How to get started with zsh.

05/2011 6

GET STARTED

www.bsdmag.org

Introduction to the Z Shell

users typing commands interactively at the terminal. Bourne
also added environment variables to the shell, which meant
that scripts could now have a context in which to run.

Later in 1970’s another version of Unix came about, which
originally shared the codebase of AT&T’s Unix – the Berkeley
Software Distribution, or BSD. Bill Joy, co-founder of Sun
Microsystems and original author of the vi text editor, wrote
the C shell (csh) which became the default shell for BSD Unix.
Its shell scripting syntax was designed to be more like the C
programming language with which Unix was written (and less
like ALGOL, which is what the syntax of the Bourne shell was
derived from.) The C shell also introduced features designed
to improve the interactive experience, adding history (which
allows users to recall and re-run previous commands quickly
and easily), editing operations such as search & replace,
aliases, job control and more. The C shell and its more modern
incarnation, the Tenex C Shell (tcsh), are both considered
harmful for shell scripting, however [1]. In the 1983, David
Korn announced a new shell, which would become known as
the Korn shell (ksh). Korn’s shell included csh like interactive
features, but retained the scripting language syntax of the
Bourne shell. The Korn shell was designed not just to be a
better shell, but to enhance the UNIX tool kit by providing new
and improved tools [2]. In 1993, a more modern version was
released (ksh93) which added more advanced programming
features, such as associative arrays, while still retaining
backwards compatibility with the Bourne shell. OpenBSD
uses a version of the korn shell which is not the same as the
original but is still /bin/ksh.

The Korn shell has served as an inspiration for other
shells such as Bash (the Bourne Again SHell, which
is the default on many systems, including most Linux
distributions and Mac OS X), and Microsoft’s Windows
Power Shell (didn’t expect a mention of Microsoft, did
you?), as well as my favorite shell of all... the Z Shell.

The Z Shell was written in 1990 by Paul Falstad, a student
at Princeton University. Paul had a professor named Zhong
Shao, and decided that Shao’s login name zsh would be a
good name for a shell. Zsh is thought to be similar to the
Korn shell, however it offers features from bash and tcsh
as well. In fact users from just about any shell could find
options in zsh to help them feel more at home. The Z Shell
can emulate (basically pretend to be) the Bourne shell, as
well as ksh. I find that zsh is at its best when not imitating
other shells – it’s a powerful shell packed with features. If
you ask 10 zsh users why they use zsh, you may get 10
different answers. Some love zsh’s extensive programmable
command completion, some are impressed by the extended
globbing (i.e., pattern matching. Glob is another bit of Unix
history, dating back to the early 1970’s), and some are
intrigued by the zsh TCP/IP implementation and FTP client.

Conferences

Open Source Business Conference
May 16-17
San Francisco, USA

http://www.eiseverywhere.com/

EuroBSDCon 2011
October 6-9
Netherlands

http://2011.eurobsdcon.org/CfP.html

BSDCan 2011
May 13-14
Ottawa, Canada

http://www.bsdcan.org/2011/

http://www.eiseverywhere.com/ehome/index.php?eventid=17669&tabid=22845&%E2%80%9D
http://2011.eurobsdcon.org/CfP.html
http://www.bsdcan.org/2011/

05/2011 8

GET STARTED

That there are so many reasons to love zsh is not surprising,
in fact zsh contains enough features to warrant its manual
page to be split into over 15 parts. The Z Shell is definitely
not designed according to any minimalist philosophy! It’s got
everything a shell user could want, and what is not part of the
shell proper is (or can be) added as a contributed module.

I’m assuming that since you’re reading BSD Magazine
(thanks, by the way) that you have access to a BSD system.
Zsh is open source and is available for all of the popular
open source BSDs (FreeBSD, OpenBSD, NetBSD, etc.)
and is shipped with Mac OS X as well. If for some reason
you do not have a BSD available to use, I recommend a
shell from SDF [3]. SDF, the Super Dimension Fortress, has
been around since 1987 and provides free shell accounts as
well as a host of other services. Their mission is ... to provide
remotely accessible computing facilities for the advancement
of public education, cultural enrichment, scientific research
and recreation. Members can interact electronically with
each other regardless of their location using passive or
interactive forums. Further purposes include the recreational
exchange of information concerning the Liberal and Fine
Arts. Their shells run on a network of 8 64bit enterprise class
servers running NetBSD, and zsh is available there.

If possible, the best way to get started with the Z Shell is to
install the latest development version on your local machine.
As of this writing, the most recent version is 4.3.11 (with
4.3.12 soon to come). While the 4.2.x branch is still listed as
the most recent stable branch, many (if not most) of us are
using the 4.3.x development branch and find it stable enough
for daily use. I’m going to leave the installation of zsh up to
you, as it is available on many different systems and each
has its own method of package installation (ports, packages,
etc.) If you have a recent Apple computer, zsh will already be
installed and located at /bin/zsh. I recommend you install the
latest zsh via fink or macports, you’ll find that it is most likely
a more recent version than the one installed already. Once
you have zsh installed, you can open your favorite terminal
emulator (xterm, Terminal.app) or you can log into SDF with
putty if you happen to be on Windows. I recommend you
start by entering the following into your terminal window:

 echo $SHELL

and press enter or return. You should see something
like /bin/ksh or perhaps /usr/pkg/bin/bash. This command
echoes or displays the contents of the environment variable
named SHELL for you on the screen. It most likely will not
display zsh, because zsh is very rarely the default shell
on a system. Unless you have a shell setup that you are
absolutely married to, I recommend changing your default
shell to zsh immediately. You may need to know the full

MICHAEL HERNANDEZ
Mike is an IT consultant and web programmer. He lives in
Brooklyn, New York, and he and his wife are celebrating
their one year anniversary on February 14th. He also loves
electronic dance music and commuting on his �xed gear bike,
appropriately named Constance.

path to zsh, which you can find by checking the contents of
/etc/shells. You can view the contents by entering:

 cat /etc/shells

Once you know the full path to zsh, you can begin the
(possibly life changing!) experience of changing your
default shell to zsh by entering the following:

 chsh

and pressing return. You will be asked for the shell you
want to be your new default, and you will be asked to enter
your password. Now I recommend you get acquainted
with the zsh manual. The manual for zsh is quite large. As
I said above, it’s broken up into over 15 parts. You can see
a list of these parts by simply entering:

 man zsh

I recommend that you begin with the zsh roadmap that is
shipped with recent versions of the shell. You can access
it by entering:

 man zshroadmap

As this is an article for BSD Magazine, and not a book,
I’m going to stop here for now. There is so much I’d like to
share about zsh and shells in general, but I’ll have to save
that for future articles. If you’re too excited to wait for my
next BSD Magazine submission, you can find a wealth of
zsh information on the web (you can start with the official
zsh page [4], and there is a great book available by Oliver
Kiddle, Jerry Peek, and Peter Stephenson named From
Bash to Z Shell [5], which offers the most comprehensive
zsh coverage available in print form today. It is a few years
old, but it well worth picking up, especially if you’re just
starting on this $PATH.

On the ‘Net
[1] http://www.faqs.org/faqs/unix-faq/shell/csh-whynot/
[2] http://slashdot.org/story/01/02/06/2030205/David-Korn-Tells-All
[3] http://sdf.lonestar.org/
[4] http://zsh.sourceforge.net/
[5] http://www.bash2zsh.com/

http://www.faqs.org/faqs/unix-faq/shell/csh-whynot/
http://slashdot.org/story/01/02/06/2030205/David-Korn-Tells-All
http://sdf.lonestar.org/
http://zsh.sourceforge.net/
http://www.bash2zsh.com/

http://www.freebsdmall.com

05/2011 10 www.bsdmag.org 11

When the PC-BSD project was started in 2005,
its goal was to provide an easy-to-use desktop
experience. KDE was chosen as the default

desktop as it was well known, easy to learn, and provided
a suite of useful applications. The PC-BSD project also
created a suite of custom graphical utilities to address
missing functionality not provided by KDE–these PC-
BSD utilities understand BSD device names and were
integrated into KDE’s menus. This made for a seamless
user experience but did cause some confusion as to
which functionality was provided by KDE and which was
provided by PC-BSD.

In addition to KDE, Fluxbox was installed for users with
older hardware or who preferred a lighter weight desktop
environment. Over time, PBIs for GNOME, XFCE, and
Enlightenment were created so that users could install
these alternate desktops using PC-BSD’s Software
Manager.

As the PC-BSD userbase grew, it became obvious
that many users did not like KDE and preferred other
desktop environments, such as GNOME, or preferred a
light-weight window manager other than Fluxbox. Further,
installing an alternate desktop as a PBI was not ideal as
it did not integrate with the PC-BSD utilities, making for
a sub-optimal user experience. It became clear that the

advantages of providing one supported desktop were
being outweighed by the disadvantages of being forced to
use a desktop one did not enjoy using.

Making the Necessary Changes
In order to integrate with multiple desktop environments,
the PC-BSD utilities had to be de-coupled from KDE. This
required a complete overhaul of nearly all of the PC-BSD
tool-chain and the PBI format itself. The configuration
tools have since been converted into pure shell or QT4,
and are window-manager independent, helping to provide
a consistent user experience regardless of the desktop
being used. The PBI format has also been re-written with
100% command-line functionality in shell and can even
run on native FreeBSD without an installed desktop.

Next, a Control Panel was created. The Control
Panel will automatically hook into any of the desktop
environments chosen during the installation. This means
that users can easily find the graphical PC-BSD utilities
which are used to manage their system and that those
utilities will be available, regardless of the desktop the
user has logged into. Figure 1 shows a screenshot of the
Control Panel as it appears today. Additional utilities may
be added to the Control Panel by the time PC-BSD 9.0 is
released later this year.

Supporting Multiple
Desktops in PC-BSD 9.0
Beginning with version 9.0, PC-BSD will allow the selection of
multiple desktops during installation. This article describes what
changes were needed to allow for multiple desktop support and
how you can help the PC-BSD project in this endeavour.

05/2011 10 www.bsdmag.org 11

pc-sysinstall, the installation
utility used by PC-BSD, was
also modified to allow for the
selection of desktops and

other system packages during
installation. Figure 2 shows

a screenshot of the installer’s
Desktop Selection screen.

Supported Desktops
One of the criteria in determining which

desktops to include in the installer
was XDG-compliance. XDG (http://

en.wikipedia.org/wiki/Xdg) is an inter-
operability standard for desktop environments

that run on top of the Xorg window system.
XDG-compliance allows for tight integration, making it

possible to include the same default wallpapers, desktop
icons, menu entries, etc. across multiple desktops.

The PC-BSD 9.0 installer allows you to select from the
following XDG-compliant desktop environments. Most of
these environments allow you to select which components
(e.g. accessibility, development, games, etc.) to install
with the base desktop. After installation, one can install/
uninstall desktop components using Control Panel ->
System Manager -> System Packages.

KDE4
KDE (http://www.kde.org) provides a complete desktop
environment that includes hundreds of applications. It

supports desktop effects, scalable graphics, easy access to
network resources, localized menus, accessibility features,
and a fully customizable environment. It provides a netbook
desktop theme (available in System Settings->Workspace
Appearance->Desktop Theme) to provide a lighter version
suited to netbook hardware. It also has a large selection
of themes, screensavers, and utilities created by the
community and available from http://kde-apps.org/.

GNOME2
GNOME version 2 (http://www.gnome.org) also provides
a complete desktop environment that includes 100s of
applications. It supports desktop effects, localized menus,
accessibility features, and a customizable environment. It is
lighter weight than KDE4, making it suitable for netbooks.

Note
GNOME3 is currently being ported to FreeBSD. If the port
is mature in time for the release of PC-BSD 9.0, it will be
included as a desktop option.

LXDE
The Lightweight X11 Desktop Environment (http://lxde.org)
is a fast and energy-saving desktop environment. LXDE
provides multi-language support, standard keyboard short
cuts and tabbed file browsing while using less CPU and less
RAM than other desktop environments. LXDE will be the
default desktop on the CD and live version of PC-BSD 9.0.

XFCE4
XFCE (http://xfce.org) is a lightweight desktop environment
that aims to be fast and low on system resources, while
still being visually appealing and user friendly. XFCE
uses modular components that are packaged separately,

Figure 1. PC-BSD Control Panel Figure 2. Desktop Selection Screen of PC-BSD 9.0 Installer

Supporting Multiple Desktops in PC-BSD 9.0

http://en.wikipedia.org/wiki/Xdg
http://en.wikipedia.org/wiki/Xdg
http://www.kde.org
http://kde-apps.org/
http://www.gnome.org
http://lxde.org
http://xfce.org

05/2011 12

allowing you to install the packages you wish in order to
create the optimal personal working environment. You can
find the modules that have been ported to FreeBSD/PC-
BSD by searching for xfce at freshports.org.

Unsupported Desktops
The unsupported desktops category includes window
managers that are typically used by power users. These
are light weight environments that may require the user
to start applications from the command line or modify
configuration files in order to customize the desktop.
These desktops are not XDG-compliant, meaning that
they do not pre-load the PC-BSD desktop icons or menu
items. However, they will include the PC-BSD wallpaper
and pointers to Control Panel and AppCafe (the PC-BSD
9.0 application installer).

The following unsupported desktops are available for
selection during and after the installation of PC-BSD
9.0:

Awesome
Awesome (http://awesome.naquadah.org/) is a highly
configurable, framework window manager. It is extremely
fast, small, dynamic and heavily extensible using the Lua
programming language. A well documented API is used
to configure and define the behaviour of the window
manager. No mouse is required as everything can be
performed with the keyboard.

IceWM
The goal of IceWM (http://www.icewm.org/) is speed,
simplicity, and not getting in the user’s way. IceWM can be
configured from plain text files and has an optional, built-
in taskbar with menu. It has been localized and additional
themes are available from http://box-look.org/.

Window Maker
Window Maker (http://windowmaker.org/) includes
a graphical tool called Wprefs which can be used to
configure the desktop. By default, there is no taskbar
and applications are accessed by right-clicking the
desktop. Window Maker provides a number of dockable
applications known as dockapps. Many dockapps are
available in the FreeBSD ports/packages collections and
you can find these by doing a Short description search for
windowmaker at freshports.org.

Working with FreeBSD
Porters
The desktops that are
used by PC-BSD are made
available thanks to the hard
work of many FreeBSD port
committers who port the
source code so that it installs
and works on FreeBSD/
PC-BSD systems. The
larger desktop projects have
porting teams: KDE (http://
freebsd.kde.org/) and GNOME
(http://www.freebsd.org/gnome/
index.html). The other desktops
have one or two individuals who are
responsible for maintaining the port of the
desktop.

iXsystems, the corporate sponsor of the PC-BSD project,
has donated several build environments to assist the FreeBSD
desktop porters in their work. These build environments are
for the KDE, GNOME, and Xorg porting teams, allowing the
porters to use speedy hardware to collaboratively build and
test their ports. The build environments run tinderbox (http://
tinderbox.marcuscom.com/), a set of scripts for creating
binary packages for multiple platforms and architectures,
and for testing new ports, port upgrades, dependencies and
packing lists.

Providing the build environments not only helps the
porters, it also helps the PC-BSD community as new
desktop changes are incorporated into testing snapshots.
This allows testers to try out and provide feedback on the
changes. The PC-BSD forums includes a Testing category
(http://forums.pcbsd.org/forumdisplay.php?f=64) where
users can provide feedback on their particular desktop.
Ports committers subscribe to their desktop’s forum and
can respond to user feedback.

How You Can Help
Going from one supported desktop to many supported
desktops is a major change for PC-BSD and we expect to
find many usability bugs in this process. For this reason,
9.0 will have a testing period of over 6 months with bi-
weekly testing snapshots. Snapshots are announced
on the PC-BSD blog (http://blog.pcbsd.org) as they are
released and users are encouraged to try a snapshot and
provide feedback on the PC-BSD testing mailing list (http://
lists.pcbsd.org/mailman/listinfo/testing). Since these are
testing snapshots, we recommend that you install them in
a virtual environment such as VMware or VirtualBox or on
a test system that is separate from your main computer.

Resources
PC-BSD Forums: http://forums.pcbsd.org
PC-BSD Mailing Lists: http://lists.pcbsd.org
#pcbsd on IRC Freenode

http://freshports.org
http://awesome.naquadah.org/
http://www.icewm.org/
http://box-look.org/
http://windowmaker.org/
http://freshports.org
http://freebsd.kde.org/
http://freebsd.kde.org/
http://www.freebsd.org/gnome/index.html
http://www.freebsd.org/gnome/index.html
http://tinderbox.marcuscom.com/
http://tinderbox.marcuscom.com/
http://forums.pcbsd.org/forumdisplay.php?f=64
http://blog.pcbsd.org
http://lists.pcbsd.org/mailman/listinfo/testing
http://lists.pcbsd.org/mailman/listinfo/testing
http://forums.pcbsd.org
http://lists.pcbsd.org

05/2011 12

We need as many people
as possible to try different
installation scenarios
(selecting a single or

multiple desktops) and to
poke about and try to use

the various menus that come
with the desktop. Finding and
reporting error messages,

missing applications, broken
links, and other unexpected

behaviour during the testing
period means that they can be fixed

before PC-BSD 9.0 is released, which
in turn maximizes the user experience

for everyone.
The PC-BSD Handbook is also being

updated in preparation for the 9.0 release. The
Handbook is a collaborative effort that happens on

the PC-BSD wiki (http://wiki.pcbsd.org/index.php/PC-
BSD_9_Handbook). Users are encouraged to read the
existing Handbook entries for their favourite desktop
environment(s) and to add information that would be useful
to users new to that desktop environment. Any changes to
the wiki are sent to PC-BSD community members who
volunteer as editors. This means that you don’t have to
be a great writer or a native English speaker to contribute
documentation–the editors review your changes and can
edit them for grammar and readability.

Conclusion
PC-BSD has a vibrant community that is responsive to
user feedback. Many of the changes that are being made
for PC-BSD 9.0 are in response to user requests for
changes in the default desktop. Readers are encouraged
to participate on the forums, mailing lists, and IRC channel
so that others can benefit from their PC-BSD experience.

DRU LAVIGNE
Dru Lavigne is author of BSD Hacks, The Best of FreeBSD
Basics, and The De�nitive Guide to PC-BSD. As Director of
Community Development for the PC-BSD Project, she leads the
documentation team, assists new users, helps to �nd and �x
bugs, and reaches out to the community to discover their needs.
She is the former Managing Editor of the Open Source Business
Resource, a free monthly publication covering open source and
the commercialization of open source assets. She is founder and
current Chair of the BSD Certi�cation Group Inc., a non-pro�t
organization with a mission to create the standard for certifying
BSD system administrators, and serves on the Board of the
FreeBSD Foundation.

www.bsdmag.org

http://wiki.pcbsd.org/index.php/PC-BSD_9_Handbook
http://wiki.pcbsd.org/index.php/PC-BSD_9_Handbook
http://bsdmag.org

05/2011 14

Google Summer of Code progress
DragonFly has 6 slots for Google Summer of Code,
with projects like kevent fixing, mirroring for the device
mapper, new disk scheduling, a port of PUFFS, and more
approved. We received far more interesting projects than
we had available slots, which is both good and bad. Work
will continue through the summer.

Pkgsrc progress
The first quarterly release of pkgsrc for
2011, pkgsrc-2011Q1, was tagged at the
start of April. It includes updates to GNOME
and KDE, along with many other updates.
KDE 4.4 should be able to build without
modification, or close to it, on DragonFly.

This release has close to
11,000 packages; packages
for DragonFly have been
built, but only for the next
release. That leads naturally
to the next topic:

The DragonFly 2.10 release and performance
The next release of DragonFly will be happening as this
issue of BSD Magazine goes to press, so to speak. This
release has removed almost all the old giant locking
mechanisms in the system, except for one large one
for the Virtual Memory system. DragonFly has switched
mostly to token use, and is one of the few non-academic
operating systems to use a primary sychronization
mechanism that is not a blocking mutex.

There has been a definite speed upgrade to the 2.10
release, which can be seen in these series of graphs.
Jan Lentfer ran a pgbench test on a 1GB database
using a DragonFly 2.8 system, then ran it again on the
same system upgraded to a recent DragonFly 2.9. The
benchmarking system had 2G of RAM so the database
activity was entirely within system memory.

I built a graph showing the difference in sysbench
results between DragonFly 2.6, 2.8, and 2.10

(which had been tagged but not released
at the time I made the graph.)

Jan Lentfer graphed the performance
difference using PostgreSQL. This was
with a 5.6G database on a system with 2G

of RAM, and an atom 330 processor. This
test also measures I/O speed

since the database size was
almost 3 times available
RAM.
DragonFly has swapcache,

the ability to cache disk information to a
faster disk device. This is most useful if you have a
SSD added to the system; swapcache will put the disk
cache information for all your attached drives onto
that fast device, making all disk accesses for cached
info as fast as your fastest device. This is especially
useful when the amount of data in use is greater than
available memory.

If the previous graph wasn’t already good news,
Matthew Dillon made some changes to how DragonFly

DragonFly News

Figure 2. sysbench results for DragonFly 2.6, 2.8, and 2.10 (shorter
bars are better)

Figure 1. pgbench improvements from DragonFly 2.8 to 2.10, in-

www.bsdmag.org 15

handles AHCI, utilizing all 32 tags, which made an even
larger difference in performance, with fantastic results.
Note that this is an expansion of the previous graph.

This upcoming release looks to have some excellent
speed improvements. It will also include the recent
deduplication work for Hammer, meaning full disk
deduplication happens as a batch process overnight,
and a live cache for regular disk activity, also called fast
cp. Initial reports have it working well on hundreds of
gigabytes of data with little memory usage; developer
Venkatesh Srinivas reported success with only 256M of
RAM available.

Graphs compiled with assistance from Jan Lentfer and Alex
Hornung. Details on testing hardware are available at http://
www.shiningsilence.com/dbsdlog/2011/04/12/7586.html.

JUSTIN C. SHERRILL
Justin Sherrill has been publishing the DragonFly BSD Digest
since 2004, and is responsible for several other parts of
DragonFly that aren’t made out of code. He lives in the northeast
United States and works over a thousand feet underground.

Figure 3. pgbench improvements from DragonFly 2.8 to 2.10,
database larger than RAM

Figure 4. pgbench improvements again from DragonFly 2.8 to 2.10,
plus swapcache

DragonFly News

http://www.shiningsilence.com/dbsdlog/2011/04/12/7586.html
http://www.shiningsilence.com/dbsdlog/2011/04/12/7586.html
http://bsdmag.org

05/2011 16

Evolution of an OpenBSD Port

www.bsdmag.org 17

It’s not a presentation about the evolution of the
OpenBSD ports mechanism itself (see References for
a paper on this), nor is it a how-to on porting software

(again, see the References). But just a look at how and
why certain changes were made to the port, as part of
a study of the overall operation of ports development on
OpenBSD at this time.

I am listed as maintainer of a couple of dozen OpenBSD
ports. To be listed as maintainer means you have to be
aware when the upstream author/maintainer issues
updates, so the OpenBSD users can get them (assuming
they are good; you also have to test). It also means
you have to keep the port up-to-date when the ports
mechanism changes, deal with dependencies on other
ports, and so on. In other words, maintain the port!

Some of my ports are fairly active, like JOSM, a Java
editor for OpenStreetMap.org maps, which is updated
constantly in Subversion, and releases are declared
stable every month or so. At the other extreme, some
of my ports are for software from the beginning of
Unix’s open source days that are no longer maintained
by their originators, like spiff, a slower but more
thorough variation on Unix diff(1). Spiff was written
in the mid-1980’s by Daniel Nachbar at Bellcore (Bell
Communications Research, an AT&T spinoff that went
through many corporate changes over the years). I have
lost touch with Mr. Nachbar and, as far as I know, no
maintenance has been done on the software in years,
perhaps decades. But it still works, so we keep it in-tree.

When software stops working, isn’t maintained upstream
and can’t be fixed by the ports maintainer, then we
remove the port altogether.

I start many ports, and some of them make it into the
tree and some do not. OpenBSD’s ports mechanism
understands this, and allows you to create your own
hierarchy under /usr/ports/mystuff (I use a lot of shell
variables as path shortcuts, so I call this $mp, for my ports).
Under $mp you create a subset of the full hierarchy, e.g., for
radicale, which is considered a productivity application,
$mp/productivity/radicale becomes the staging directory
for the port. Once it is completed and OK’d by another
ports developer, it is imported into CVS and then checked
out in its official location, which would be /usr/ports/
productivity/radicale. Except I never got that far. Sergey
Bronnikov submitted another port for radicale, and his
was more complete than mine. I realized it was time to rm
-r $mp/productivity/radicale, and start contributing to the
new improved version.

The new port was picked up by Stuart Henderson, one
of our more active ports maintainers, who commented on
some improvements that would need to be made before
the port could be imported into CVS. He actually provided
most of the improvements (he’s not just talk!), and so I
tried building and installing his version.

Before too long I had a working set of calendars. I
had previously used KDE’s korganizer, so I had several
calendar files, which I simply copied to /var/db/radicale/
calendars/ian/ and changed their ownership and group

Evolution of
an OpenBSD
Port

In this article I’ll talk about the evolution of the OpenBSD port of
radicale (http://www.radicale.org/), a nice small, simple CALDAV-
based calendar server written in Python by Guillaume Ayoub.

http://OpenStreetMap.org
http://www.radicale.org/

05/2011 16

Evolution of an OpenBSD Port

www.bsdmag.org 17

another user on the system. Radicale’s web site claims
it does not intend to be a 100% implementation of the
CALDAV spec, so this feature may or may not be added
someday. However, for a small, mutually-trusting user
community with personal = False it offers a good shared
calendar mechanism. For a large, untrusted community
you should install it with personal = True to limit each user
to their own calendars.

Of course, I did all this work on my test server a.k.a. my
laptop. Since so much polishing had been done at this
stage, installing and getting it running on the real server
consisted only in the following:

1. sudo pkg _ add -v radicale
2. sudo vi /etc/radicale/config # to enable ssl and

authentication, as described
3. Install a password for each user with htpasswd
4. sudo /etc/rc.d/radicale start # to start the server
5. Connect and enjoy!

Radicale is a nice, simple server for CALDAV calendar
clients. It thus offers a good-sized sample of what is
involved in preparing and tuning up a port/package to
make it easy for end-user installation. It is now available
for use as described here on OpenBSD -current, and will
be in the next stable release.

(each port gets its own distinct userid and group, a
standard privilege separation mechanism. After restarting
the daemon (/etc/rc.d/radicale restart), I installed the
Lightning add-on to Mozilla Thunderbird (there’s a port
for that) and instantly had working calendars. Good start,
I thought.

At around this point Stuart imported this version of the
radicale port into our tree.

Then I tried engaging the authentication mechanism.
No dice – it all worked except for the part where Lightning
should ask for a password, which never happened:
I could still get at my calendars. After pondering the
configuration file and the basic documentation on the
web site, I contacted the upstream author. He was unable
to replicate this problem. But I had copied Stuart on the
mail I sent upstream, and he apparently pondered better
than I. He had patched the source to use ${SYSCONFDIR},
but not run the substitute command. He committed a fix
to the Python source that made it work, and also put a
comment in the configuration file showing how to use the
htpasswd command. I updated to his version of the port and
tried again. Now I could only access my calendars with
a password – definitely an improvement from a security
point of view, but not the final story, yet.

Then I tried engaging the encryption (SSL). Since I
already had a web server certificate, I simply pointed the
Radicale configuration file (/etc/radicale/config) at the
files in /etc/ssl and /etc/ssl/private. No dice. Thought
about this some more. Finally ran the server from a
console and saw the stack trace: permission denied on
/etc/ssl/private/server.key. One good head-bonk later,
and a few keystrokes to copy the files and chown them,
and I had working encryption. But our goal is not just to
get a port working for ourselves, but to make it easy for
end users. I wrote a draft README file and sent it to
Stuart, and we discussed it by email. Should we put a
note in the MESSAGE file which is displayed when the
port is installed? Or in the pkg-readme which is longer
but not displayed automatically? Finally we agreed to put
a note in the README file telling the user how to edit the
config file to enable encryption, reminding people about
this issue. I had overlooked the issue because many
of the ports do their own privsep: they start as root just
to open such files, then setuid/setgid to the respective
userid. But most Python-based ports do not work this
way, including radicale. So the comment in the readme
file got committed (as revision 1.3), hoping to make it
easier for anyone else to get it right first time.

One limitation is that Radicale itself does not (yet)
offer per-user ACLs (access control lists), so you
can’t offer some but not all of your online calendars to

References
• Evolution of OpenBSD Ports: interview in 10 Years of PkgSrc,

http://www.netbsd.org/gallery/10years.html#espie
• Ian Darwin’s maintainer list at OpenPorts, http://openports.se/s

earch.php?stype=maintainer&so=ian%40openbsd (and similarly
for any other maintainer, just change the email address)

• Spiff technical paper at ftp://ftp.cyberway.com.sg/pub/funet/
unix/security/docs/usenix/usenix/summer88/spiff.ps.gz

• Radicale website: http://www.radicale.gz
• OpenBSD porting guide: http://www.openbsd.org/porting.html

IAN DARWIN
Ian Darwin is an OpenBSD committer who lives in the country
well north of Toronto, Canada. He runs *NIX on just about all his
computers; he once said that his only Windows looked out over
the hillsides where he lives.

http://www.netbsd.org/gallery/10years.html#espie
http://openports.se/search.php?stype=maintainer&so=ian%40openbsd
http://openports.se/search.php?stype=maintainer&so=ian%40openbsd
ftp://ftp.cyberway.com.sg/pub/funet/unix/security/docs/usenix/usenix/summer88/spiff.ps.gz
ftp://ftp.cyberway.com.sg/pub/funet/unix/security/docs/usenix/usenix/summer88/spiff.ps.gz
http://www.radicale.gz
http://www.openbsd.org/porting.html

587

57
57

http://www.bsdcan.org/2011/

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

http://www.bsdcan.org/2011/

05/2011 20

HOW TO’S FreeBSD & Alix

www.bsdmag.org 21

Today, some version of Linux can be found running
on everything from toasters, to cameras. Much of
Linux success in this area began with OpenWRT

and the early LinkSys WRT54G routers. As long as it had
some RAM, and some flash for storage, a Linux operating
system could usually be found on it. Usually, this was a
stripped down kernel, a feature limited tool set, due to the
constraints of storage and memory found on the router
like platforms.

FreeBSD has always had an excellent reputation as a
server grade operating system. It is not as widely known
as an OS for embedded devices.. The reasons are many,
mostly having to do with kernel support for the various
hardware platforms and processors. Today, one will still
find FreeBSD primarily targeting Intel/AMD x86/x64 based
processors, along with a few ARM based platforms.

The embedded hardware market has been undergoing
dynamic changes over the last few years, with SOC

FreeBSD & Alix

The embedded device or Single Board Computer (SBC)
market has for the most part, been dominated by variety of
Linux derivatives.

A pint sized install of an Enterprise OS

What you will learn…
• Can FreeBSD be used successfully in the embedded device market?
• Which type of embedded devices work best for FreeBSD
• How to install FreeBSD 8.2 on x86 based embedded SBC
• Bene�ts and limitations of Embedded platforms
• How to determine which applications are best suited for

embedded platforms

What you should know…
• How to con�gure FreeBSD networking from CLI prompt
• Con�guration of applications
• Edit system �les with vi or other text editors
• Setup a serial console and use a terminal emulator (minicom)
• Install packages from the CLI prompt

Figure 2. Alix 3 SBC CF and Mini-PCI slotFigure 1. Alix 3 CPU side with mini-pci B/G radio

05/2011 20

HOW TO’S FreeBSD & Alix

www.bsdmag.org 21

FreeBSD 8.2 changes the serial port names, so where
they mention editing /etc/ttys and changing ttyd0, find the
line that starts with ttyu0 and make it look like this in step 3:

ttyu0 „/usr/libexec/getty std.9600” vt102 on secure

That’s it. FreeBSD is installed, and it should boot right up
to a login prompt.

Normal configuration such as network interfaces, and
such can be done via /etc/rc.conf. The LAN interface is
vr0 and the Atheros wireless device is available on ath0.
My /etc/rc.conf looked like:

hostname=”alix3”

sshd_enable=”YES”

sendmail_enable=”NONE”

ifconfig_vr0=”inet 192.168.1.32 netmask 255.255.255.0

broadcast 192.168.1.255”

defaultrouter=”192.168.1.1”

The first steps, just like building any server, is to create a
regular user, setup networking, with DNS. Then install a
few tools to make like life nicer..

pkg_add -r bash screen

Installation of applications is as simple as running
the appropriate pkg _ add -r Keep a close eye on
remaining storage space.. eg;

pkg_add -r apache22

 # pkg_add -r lighttpd, etc.

This left the system with around 500 megabytes of flash
storage (out of 1 Gig) useable and approximately 220

(System On Chip) and ultra low-power processors. An
example is the AMD Geode LX800. A fully Intel x86,
compatible processor, running at 500 Mhz, drawing less
than 1 watt of power. Alix has taken this processor and
combined it with a small 100x160 mm board to form
a quite powerful single board computer (SBC). The
combined power diet for this tiny board is less than 5
watts.

How viable is FreeBSD today, on such devices? What
applications could be used on low power devices like the
Alix and others? That’s is what we will look at next.

Getting Started
To prepare for this article, I contacted the good folks at
TitanWireless, LLC, in Austin Texas, who shipped me an
Alix 3 board, equipped, according to my wishlist. The unit
came configured with:

• AMD Geode LX800 Processor, 500 Mhz
• 256 Megs of RAM
• CF Flash (1 gig in test unit)
• LAN – 1
• DBII F20-PRO B/G miniPCI radio card
• Aluminum case, antenna and power supply

The Alix 3 series SBC was chosen because of it’s wide
range of configuration options, availability and cost.
It can run nearly any modern x86 operating system,
(given memory and disk limits). The company and their
suppliers provide excellent support as well. Their support
of FreeBSD and Linux was of primary consideration.

My first concern was getting the latest production
release of FreeBSD (8.2-RELEASE) onto the flash card
and able to boot. This turned out to be a straight forward
and simple process, once I had scrounged up a serial
cable to use for the console.

Install FreeBSD to Flash
There are several ways, (PXE, USB-CDROM, etc) but
simply using a common multi-format flash card USB
reader, and a host PC or server running FreeBSD worked
very well. Following the example documentation (for the
most part) from this site, http://www.freebsdonline.com/
content/view/589/506/ was great, with only a couple
changes. Pay attention to the device names (you don’t
want to re-install over any existing hard drives).

Suggestion: Install the Minimal Install as space is a
premium on flash storage.

When the Alix boots, pressing [s] during the memory
test will let you change the serial port speed to 9600 (do
this!). It defaults at first to 38,400 baud. Figure 3. Alix FreeBSD Boot screen over serial console

05/2011 22

HOW TO’S

FreeBSD allows you to mount certain filesystems read-
only, which if you plan carefully, you can build a server
with a filesystem that is nearly indestructible. Mounting
/ and /usr read-only and then making /var a ramdisk is
a favorite trick of mine. One can always plug in external
storage (the Alix has 2 x USB 2.0 ports) and place data on
thumb or external hard drives.

Avoid Disk or CPU intensive Programs
Applications that have a lot of disk i/o will not bode
well due to the bandwidth and cycle limitations of flash
memory. Likewise, programs that consistantely load the
processor will cause higher power consumption, and
higher latency.

Summary
FreeBSD is well suited for x86-based embedded
platforms. FreeBSD 8.2 really shines on these small
machines as an application platform. FreeBSD is well
known for it’s reliability and performance on large footprint
servers. That same reliability is enhanced on embedded
platforms. Installation is simple straight-forward, and
the hardware for systems like the Alix platform are well-
supported by FreeBSD.

Replacing PC’s or servers that draw hundreds of watt/
hours of power, with small embedded devices could
easily green up an office or data center, without sacrificing
reliability or performance.

Embedded x86 based hardware offers a great
opportunity for full-power operating systems such as
FreeBSD to explore avenues previously limited to custom
linux distributions. Replacing just one full size server with
an embedded server will produce a return on investment
in only months, from the power savings alone.

megabytes of available memory for applications. Fifty
megabytes where allocated for swap space. It bears
noting, that this is a complete (albeit minimal) FreeBSD
operating installation.

Compact flash has become relatively inexpensive, as
SD Flash is replacing it as the favorite for digital camera
storage. It’s possible to find CF (4gig/$20, 8gig/$40),
which makes other applications viable on the Alix.

Applications
The biggest issue to determining what applications fit
well on an embedded device is available resources,
whether they be memory, cpu, or storage (flash).
Evaluating what applications would benefit the most
from an embedded device platform may be simplified
by understanding what the benefits and limitations that
such platforms entail.

Bene�ts
Low power requirements (could run off a UPS for days)
Very fast boot times (Alix boots FreeBSD in 43 seconds)
Good network I/O
Durable for unfriendly environments
Wireless and network connectivity

Limitations
Memory (256 megs or less usually)
Storage (some CF cards are up to 8/16 gig)
Flash i/o performance and limited write cycles
Expansion limited to Mini-PCI slots

So given the limitations, what are applications that we
can put on Embedded FreeBSD? Several are obvious,
like a router or firewall deployments, (see pFsense)
but there are a few others you might not think of right
off:

• Fast booting and quickly available DNS/DHCP
servers (very good)

• Asterisk PBX (perfect for SOHO with sip-providers
instead of PSTN lines)

• Radius Servers
• Web server for small sites with mostly static content

(kiosks, portals, web-app front-ends)
• Network monitoring systems
• Wireless Access Points or wireless bridges
• IRC or shoutcast streaming servers

These applications work surprising well, as they need
minimal cpu, a lot of network i/o and minimal disk
activity.

BILL HARRIS
has been installing and managing a variety of Unix Operating
Systems for the last 25 years in the North Texas area. He has
worked on everything from Radio Shack(c) Xenix, DEC Ultrix,
Digital Unix, FreeBSD and Linux.

On the ‘Net
• Titan Wireless, LLC, http://www.titanwirelessonline.com
• FreeBSD http://www.freebsd.org
• FreeBSD Online http://www.freebsdonline.com
• Alix http://pcengines.ch

http://www.titanwirelessonline.com
http://www.freebsd.org
http://www.freebsdonline.com
http://pcengines.ch

http://bsdmag.org

05/2011 24

HOW TO’S Mono (C# and the .NET Framework) on FreeBSD

www.bsdmag.org 25

A lot of the complexities of other languages, such as
memory management, are solved automatically
using C# and the .NET Framework. Because of this,

rapid application development is simplified. What’s better, is
that all of this is available today on FreeBSD using Mono.

What is Mono?
The home page of the Mono Project, http://www.mono-
project.com, describes Mono as follows:
Mono is a software platform designed to allow developers

to easily create cross platform applications. Sponsored by
Novell (http://www.novell.com/), Mono is an open source
implementation of Microsoft’s .NET Framework based
on the ECMA (http://www.mono-project.com/ECMA)
standards for C# (http://www.mono-project.com/CSharp_
Compiler) and the Common Language Runtime (http://
www.mono-project.com/Mono:Runtime).

There is more information on the What is Mono page
here: http://mono-project.com/What_is_Mono. This article
will cover the following topics.

• Installing Mono
• Installing and using portshaker
• Mono components
• Compiling Hello World in Mono
• MonoDevelop IDE
• The BSD# Project

Installing Mono
Mono is available as a port on FreeBSD. The following
steps will guide you through installing it.

Step 1. Download FreeBSD ports
For those new to FreeBSD, the ports tree is a list of
applications that can be automatically downloaded,
compiled, and installed. Running the following command
as root will download and install the ports tree.

Mono

The .NET Framework and the C# language have simplified
the software development process in many ways.

(C# and the .NET Framework) on FreeBSD

What you will learn…
• How to install Mono
• What is and how to use portshaker
• The basics of the Mono components
• How to compile a simple application using Mono
• How to install and the basics of using the MonoDevelop IDE

What you should know…
• How to install and use the FreeBSD ports tree as it will be used to

install Mono, Portshaker, and MonoDevelop
• Development basics

Figure 1. MonoDevelop - Welcome Screen

http://www.mono-project.com
http://www.mono-project.com
http://www.novell.com/
http://www.mono-project.com/ECMA
http://www.mono-project.com/CSharp_Compiler
http://www.mono-project.com/CSharp_Compiler
http://www.mono-project.com/Mono:Runtime
http://www.mono-project.com/Mono:Runtime
http://mono-project.com/What_is_Mono

05/2011 24

HOW TO’S Mono (C# and the .NET Framework) on FreeBSD

www.bsdmag.org 25

be business reasons for using a previous compiler such
as .NET 2.0.

Mono runtime
The mono runtime could almost be compared to running a
shell or perl script, as mono applications are launched by
first calling mono:

/usr/local/bin/mono /usr/local/path/to/someapp.exe

The mono binary is the runtime that implements the CLI
(Common Language Infrastructure). It includes a JIT
(Just-in-time) compiler, an AOT (Ahead-of-Time compiler).
It also handles memory management for you and has an
excellent garbage collector to clean up memory.

Base class library
Mono is first and foremost a framework and as all frameworks
it has a very large class library. Most importantly, this class
library is compatible with the Microsoft .NET class library, so
applications written in Mono should also run on Windows
platform. This allows enterprise solutions to be developed
once and to use them on any of their operating systems.

Compiling “Hello World” in Mono
As mentioned previously, one of the compilers for Mono is
gmcs. It is simple to compile C# code from the command
line. Create a new file called hw.cs.

Note
Class object files in C# end with a .cs extension. Unlike
C++, which has a .cpp file and a separate .h file, classes
are contained in one file. Using your favorite text editor,
add this text to the new file:

portsnap fetch extract

Step 2. Installing and using portshaker
The default ports tree does not include all the ports that
use Mono. Also some ports based on Mono that the default
ports tree include are no longer maintained there. Instead,
many Mono ports are only added to the ports tree using a
tool called portshaker. The long-term supported version of
Mono is 2.6.7 is in the regular ports tree. However, the latest
version is 2.10.1. The portshaker utility will merge into ports
latest version of Mono. If you prefer to use the long-term
supported version, skip this step. Installing portshaker.

cd /usr/ports/ports-mgmt/portshaker

Once portshaker is installed, running it as root will update
the mono port and merge Mono ports into the ports tree.

portshaker

The mono port is updated and other mono ports are
merged into the ports tree.

Step 3. Installing the latest version of Mono from Ports
Once the ports tree is installed, Mono can be installed by
running the following as root.

cd /usr/ports/lang/mono

make install

This will download and install mono.

Mono Components
Mono is composed of the following components:

• Mono compiler
• Mono runtime
• Base class library
• Other libraries

Mono compiler
Like many program languages, Mono code is compiled.
Mono, like .NET Framework on Windows, has different
versions. Each version has a separate compiler.

mcs The depricated compiler for .NET 1.1
gmcs The compiler for .NET 2.0
dmcs The compiler for .NET 4.0

Use the appropriate compiler for your needs. Any new
application should use the latest compiler but there may Figure 2. MonoDevelop - New Solution

05/2011 26

HOW TO’S

projects and improved GIT support. To get a more complete
list of features being added in 2.6, see the following link.
http://monodevelop.com/index.php?title=Download/What
's_new_in_MonoDevelop_2.6.

Running MonoDevelop
A MonoDevelop shortcut is installed under the Development
section of the KDE menu. However, you can simply run
monodevelop from a shell. If you are coming to mono
from Visual Studio, you are going to feel right at home as
MonoDevelop has a feel very similar to Visual Studio. The
Welcome page is quite friendly and provides links to help
get you started.

Creating a new Solution
In .NET there are both Projects and Solutions. First you create
a Solution. A single default project is added to the Solution
by default and more Projects can be added to a Solution.
Creating a Solution is simple. There is a link on the Welcome
page or you can go to File | New | Solution or for those who
prefer keyboard shortcuts, you can press Ctrl + Shift + N.
There are multiple solution types you can choose from. You
can develop in C, C#, VBScript, and other languages.

The BSD# Project
There is a project that exists to port Mono, MonoDevelop,
and Mono-based applications. The web site home page,
http://code.google.com/p/bsd-sharp/, describes the project
as follows.

The BSD# Project is devoted to porting and maintaining
the Mono .NET framework and applications for FreeBSD.

The repository currently contains FreeBSD ports for the
framework, libraries and third parties applications released
which are not yet in the main FreeBSD ports tree, with the
intent that they will be integrated once they are ready.

The project aims to act as a central testing point for porting
new releases, for introducing new applications, and for testing
framework wide changes that will affect all applications that
rely on Mono, before they reach the FreeBSD ports tree.

Some information can also be found at http://
www.mono-project.com/Mono:FreeBSD. While the project
is successful, more contributors are needed as there
is plenty of work to do. If you have time and the desire,
consider joining the project. You can start by becoming a
member of the mono@freebsd.org mailing list.

/*

 * hw.cs

 */

using System;

namespace HelloWorld

{

 class HelloWorld

 {

 static void Main(string[] args)

 {

 System.Console.WriteLine(„Hello World”);

 }

 }

}

Save the file. Compile the code to create an hw.exe
program.

gmcs hw.cs

Now use the mono runtime to run the file. You have now
compiled your first .NET application using Mono.

MonoDevelop IDE
There is an IDE for Mono named MonoDevelop.
MonoDevelop is described as follows on its home page: http://
www.monodevelop.com. MonoDevelop is an IDE primarily
designed for C# and other .NET languages. MonoDevelop
enables developers to quickly write desktop and ASP.NET Web
applications on Linux, Windows and Mac OSX. MonoDevelop
makes it easy for developers to port .NET applications created
with Visual Studio to Linux and to maintain a single code base
for all platforms. MonoDevelop has a lot of the features of
modern IDEs, such as code completion, auto-format and
more. The current release in ports is 2.4.2

Installing MonoDevelop
MonoDevelop can be installed from ports as follows.

cd /usr/ports/devel/monodevelop

make install

Note
While Mono itself is not yet available for PC-BSD as a PBI,
MonoDevelop 2.4.2 is available as a PBI which makes it
available to install from the PC-BSD Software Manager.
http://www.pbidir.com/bt/pbi/415/monodevelop

Note
MonoDevelop 2.6 is in beta, though there is not yet a port for it.
Some of the exciting new features include support for .NET 4.0

JARED BARNECK
Jared Barneck has been a FreeBSD enthusiast for over ten years.
He works as a C# developer for LANDesk Software. He maintains
a blog at www.rhyous.com where he shares his FreeBSD and C#
knowledge with all of us.

http://monodevelop.com/index.php?title=Download/What's_new_in_MonoDevelop_2.6
http://monodevelop.com/index.php?title=Download/What's_new_in_MonoDevelop_2.6
http://code.google.com/p/bsd-sharp/
 http://www.mono-project.com/Mono:FreeBSD
 http://www.mono-project.com/Mono:FreeBSD
mailto:mono@freebsd.org
http://www.monodevelop.com
http://www.monodevelop.com
http://www.pbidir.com/bt/pbi/415/monodevelop

http://www.dotlike.net/

05/2011 28

HOW TO’S Drupal on FreeBSD – Part 6

www.bsdmag.org 29

One of the reasons the author is so encouraged
by software licensed under the General Public
License (GPL) and the BSD Licence is there

are no limits to how far applications can be extended
or modified to meet the business requirements of the
moment. With the current belt-tightening amongst
organisations, a powerful case can be made for non-
proprietary software especially where the IT department
is the focus for innovation and cost savings. This
especially extends to the area of the World Wide Web,
where commercial and government organisations are
being forced to adopt a professional web presence but
at the same time struggle with software that just doesn’t
quite “fit”. Proprietary software often does not achieve
100% of the customer requirements, additional modules
or modification are often required for specialist needs and
this once again raises a historical problem IT managers
and developers struggle with. Do you purchase an off-
the-shelf product and live with the functional deficiencies,
write the application from scratch or use a BSD/Open
Source solution? Each approach has its strengths and
weaknesses, but in the authors experience, the latter
solution is becoming accepted even in organisations that
were strongly committed to Closed Source as recently as
a few years ago.

Getting down to fundamentals, software such as
FreeBSD and Drupal allow the System Architect to be

creative and flexible and meet more of the customer
requirements either in a shorter period of time or cheaper
than proprietary solutions. Recently the author was asked
to publish a number of YouTube videos on his employers
website, but due to the structure of the CMS application
a vendor supplied module was required, at the cost of
approximately $1000. The author could have written
a module in-house to add this functionality, but time
was committed to other projects. In the end, the idea
was abandoned and much was made of the irony that
an application that was meant to help the organisation
communicate effectively via the Internet was in fact
hindering the process. I don’t believe for a moment that
the original developers of the application were so short-
sighted as to ignore the importance of extensibility, but
it is disappointing when the financial imperative to make
a profit limits creativity. Without straying too far into the
quagmire of licensing ethics, it is safe to say Closed
Source software (especially vertical market applications)
will allow the developer to be as creative as the budget or
the API allows. GPL and Open Source software by being
intrinsically open, does not suffer from this. The opposite
indeed could be argued – Drupal warns against Hacking
Core and the temptation has to be resisted to perform a
quick and dirty fix that has long term implications.

One of the old sayings is that WWW doesn’t stand for
World Wide Web it stands for Wild Wild West. Indeed, the

Drupal on FreeBSD

In this the last article in the series on the Drupal Content
Management System, the author looks back at what has
been covered in the previous 5 articles and shares his real
world experience with Drupal.

Part 6

What you will learn…
• How to integrate PHP / JS and write a basic drupal module

What you should know…
• Basic BSD / PHP skills and how to install / administer Drupal CMS

(Parts 1, 2, 3, 4 & 5)

05/2011 28

HOW TO’S Drupal on FreeBSD – Part 6

www.bsdmag.org 29

included commissioning the server, configuring email
and backups, testing, firewall configuration, consulting
with users/training and adding extra functionality. If my
time was committed 100% to the project this would have
taken considerably less, but I had to fit this in around other
commitments. The system was developed using Drupal
6.2 as some of the modules were not available for 7.0.

Key functionality
The system had to support:
• Calendar based unique bookings
• Reports for customers and the administrator for

historical and daily bookings
• A unique slot system based on 45 minute periods (but

not necessarily consecutive)
• Bookings could only be made for Monday to Friday
• Online registration and password changes
• Email alerts to the office administrator to approve

accounts and bookings
• Email alerts to customers when booking is approved
• Display daily bookings on public monitor
• A Chinese Wall that allows customers to quickly

identify unavailable slots but not view their com-
petitors bookings

• Automatic backups onto a Windows 2003 server

Apart from the standard core Drupal modules, the
following were installed to add functionality (Table 1).

Method
The server was commissioned with a fixed IP address
and the AMP stack was installed and configured. Server
patched and upgraded to the latest versions.

Email was configured using Postfix, and as the server
was being initially tested on our Intranet rather than being
publicly available via our DMZ, some clever configuration
was required of our Astaro firewall to allow outgoing mail
out to the real world while sending email internally via
Microsoft Exchange. I used the transport rules in Postfix
to accomplish this, but this was the first major challenge
as our System Administrator had our internal mail-server
very secured and unfortunately we couldn’t pass both
the external and internal email via the Exchange box.
Webmin was also installed to allow easy maintenance as
well as SSH, but these were secured and configured so
that access was only available from inside our network. As
this was a time/date based application, it was important
that the server was configured to pull the correct time and
date from our in-house NTP server.

It was decided to use Drupal 6.2 as a number of the
modules I wanted to use were not available under 7.0.

Internet is a challenging and often hostile environment,
yet the similarity between the two is striking. Like the
Wild West, frontiers are continually being moved forward,
competition is rife, and it is essential that if an organisation
is to achieve and maintain a lead that innovation and
creativity are built into the process. The more constraints
that are placed upon the developer or architect, the less
successful the project will be in the medium and long term
as there will be conflict between the rapidly changing
needs of the Internet community (The Customer) and any
limited functionality of the software. This also the raises
the issue about the The medium is the message – again
there is tension between those that wish to maintain the
status quo of the old way and those that wish to expand
horizons – a good example being Mark Zuckerberg
(Facebook) and Jack Dorsey (Twitter).

By design, FreeBSD and Drupal inherently lean towards
creative solutions, and in the authors experience they
have delivered every time.

Case Study
An urgent request for an online calendar based booking
system with reporting was given to me to develop, to
replace the current telephone/paper based system. There
was no available budget. The pre-requisites were user
friendliness, security, speed of development, robustness,
workflow and mission criticality. All individual daily bookings
were to be displayed on a large wall mounted LCD monitor
for customers and the department to view on a daily basis.
The system would be accessed by customers 24/7, and
any failure in the system would have a major impact on the
organisations reputation. The most important factor was that
the interface had to be foolproof, and it was essential that
under no circumstances could double-bookings take place.

Three options were considered, use the current CMS
product and write a custom module and mini-site, write a
custom application from scratch using PHP or Perl, or use
Drupal. The first option was dismissed as the current CMS
is under review and is due to be upgraded or replaced
in the near future. While I was confident I could write a
suitable application in Perl or PHP, I was concerned that I
would not have sufficient time to test the system properly
for any security flaws or bugs as it was essential that no
customer could have access to any other customer’s
history. Drupal was finally settled on, as I could quickly
put together a prototype, gather together a willing base of
customers for user acceptance testing as the system was
being developed, and also have the ability to add further
functionality at a later date (e.g. XML integration with
our Financial Management Systems). The system was
developed and rolled out over a period of weeks which

05/2011 30

HOW TO’S Drupal on FreeBSD – Part 6

www.bsdmag.org 31

Hopefully in time this will improve, but for the immediate
future 6.2 will continue to be supported so this was not an
issue. 6.2 was duly installed, and the additional modules
listed in Table 1 were uploaded and configured. Apache
had to be configured to support smart URLS, and as I
installed Drupal in a subdirectory off the webserver root,
this new directory was made the root directory when
pages were requested.

The next step was to automate backups, and a bash
script was written to archive the MySQL database, the
/www tree and important files from the system tree (/etc,
/logs custom scripts etc.) and this was added as a cron job
to be run daily. This allowed ad-hoc snapshots to be taken
during development as required. An additional script was
added to MD5 sum the archives, and copy these via CIFS
to a Windows 2003 server share. The Drupal cron script
was added to cron to be fetched via Wget and executed
every 15 minutes, which would check for Drupal updates
etc.

Development
Development of the application was straightforward.
Additional content types were created for each type of
booking, and pages were used to communicate to the
users website status, FAQ section, terms of use etc. As
each booking type had different fields, extensive use of
CCK and FormFilter was used to add or remove fields as
required on each booking page. While it is possible to use
CSS and the template API to obfuscate fields, these could
still be accessed so it was decided to remove any potential

risk at source and not publish fields that potentially would
pose a security risk. A good example is when a user adds
a booking, Drupal provides a check box for Published.
While it is easy to define in the content type for this check-
box to be disabled, if it was still displayed to the user
they could inadvertently enable it thereby allowing their
booking to be crawled by robots or viewed by another user
if they were to discover the URL. By using FormFilter and
disabling Publish altogether, the only options available to
the user were Save or Edit the booking. Considerable care
was taken to ensure fields were validated appropriately,
and most of this was easily achievable via CCK. The only
custom validation was the bookings validation module,
which will be covered later. A custom dropdown was used
for the slot times as these were not consecutive and were
every 45 minutes. The Drupal date module only supports
15 minute increments.

After the different content types were added, the next
step was to integrate data gathered from the forms with
the Calender and Views. Two calenders were designed,
one for the Administrator that allowed them to view all
bookings by all users with all details available, and a
cut down version for the end users that only showed
wether a slot was booked or available. Multiple reports
were designed using views, and again the same method
was used so that the Admin could have access to all the
relevant information, and the end users only could access
their particular history.

Workflow was the next challenge, and this was
accomplished by using the Rules and Tokens module and
every time a booking was added or approved, an email
was fired off to all involved with the relevant status and
booking reference.

The next stage was to build any ad-hoc pages, FAQ’s,
etc. as a precursor to building the menus and blocks.
Once these we all in place, a block was created for the
Administrator and a separate block for the users, each
containing links to the relevant content, forms, reports
etc.

Security and user accounts were configured next, and
additional fields were added to the login profile for each
user. A checkbox was added that would not accept the
registration unless the user had read the terms and
conditions. Groups were added for Administrators and
Users, and access to the relevant content, modules
and functionality were defined and checked. Blocks and
menus were then configured as appropriate, allowing
different levels of security.

A dedicated module was written to perform validation of
the bookings. Originally, the unique field module was used
but as the project progressed more and more validation

Table 1. Additional modules for booking system

Module Provides
Administration Menu Friendly Admin UI

CCK Allow development of custom content
�elds

Calendar Displays views in Calendar

Date Add date �eld to CCK

Form�lter Hides �elds from customer (e.g. publish)

Sections Themable sections

Skinr Skins / themes Drupal output

Token Provides hooks to node name in
distributed email

Rules Provides email based work�ow

Captcha Stops robots from subscribing

External Links Adds icon to links external for site

Jquery Required for CCK date popup

Views Reporting and calender etc.

Custom Module Slot veri�cation

05/2011 30

HOW TO’S Drupal on FreeBSD – Part 6

www.bsdmag.org 31

allow access. Web services were then available publicly,
and admin functionality such as SSH and Webmin were
only allowed internally. Site was launched on time,
at the total cost of a second-hand HP server and my
development time.

Lessons learned
As usual, it is important to get a decent functional
specification at the outset. Unfortunately, with the best will
in the world project creep is always a reality. My biggest
mistake was not anticipating the additional site data
which required moving from a Drupal module to a custom
module written in-house. In hindsight, it would have been
preferable to have used that method at the beginning
but as the original plan was not as wide reaching, this is
understandable.

If you are going to write a custom module, unless it is
only a few lines of code, a debugger is essential. Xdebug
and Netbeans is an excellent combination for this, but
should only be used in a test environment as it exposes
critical information (e.g. login names).

We did experience one issue with the calendar and
earlier versions in Internet Explorer. Access via our secure
portal would not allow the user to populate the date field
calender dropdown, but switching to Google Chrome or
Firefox solved this problem. This was a strange problem,
as using the same version of IE on our local network was
OK.

Final Outcome
Since go live, the system has required only minor tweaks
– one new customer thought the email alert was too brief
so further details was added. Some changes have been
made to the reports to give different views of the data.
One pleasant surprise we discovered as we moved from a
paper based booking system to online is that a particular
80 year old customer had to buy a PC to go online as they
hadn’t used the internet before. They are now successfully
using the system on a regular basis.

was required as additional functionality was demanded
(e.g. the booking system was extended to cover an
additional 6 locations rather than just the one in the original
project specification). This was achieved using Netbeans
and Xdebug, as some of the logic was quite complex.
The Devel module was also temporarily installed, to allow
evaluation of variables exposed via the API’s.

A special view was created to display the daily booking
as a report. Using the combination of Views slideshow,
each booking was cross faded every 10 seconds or so.
A custom template was added with a high-quality royalty
free image as a backdrop which would display alongside
the bookings via a unique URL. As a separate PC would
be used in the reception area to display this, a dedicated
Drupal account was created with a special login that would
automatically display that page on login. Google Chrome
was used as the browser in full screen mode and with a
black background the display looks striking on a 22 inch
LCD wall mounted flat panel.

Finally the Zen theme was uploaded and the CSS
configured and written. Extensive use of Firefox and
Firebug was used at this stage, and the .tpl and .css files
were modified to give the site a professional look and
feel while maintaining accessibility and cross browser
standards.

From a system administrator angle, backups were
tested and a complete restore was checked using a Virtual
Machine. Provided a donor server is available with the the
OS preconfigured, with the current dataset I can have the
system restored in under 5 minutes. The system was then
tested using various tools including Zenmap, Siege and
Wget to check for unwanted open ports, stability, and data
being exposed that shouldn’t be.

Testing and project creep
Initially the system was tested in house by 4 members of
staff and this ironed out most of the initial bugs and logic
problems. Remote access via our secure portal was given
to a few external customers to test, and while the initial
version followed the original specification many good
suggestions were submitted by those who would use the
system on a daily basis. While this added to the burden of
project creep, Drupal proved to be powerful and versatile
and all the customers suggestions were incorporated by
the go-live deadline.

Go Live
The server was relocated to the datacentre and
reconfigured to reflect the move into our DMZ. Various
Postfix and network settings were reconfigured to reflect
the move, and the external Astaro firewall configured to

ROB SOMERVILLE
Rob Somerville has been passionately involved with technology
both as an amateur and professional since childhood. A passionate
convert to *BSD, he stubbornly refuses to shave off his beard under
any circumstances. Fortunately, his wife understands him (she
was working as a System/36 operator when they �rst met). The
technological passions of their daughter and numerous pets are
still to be revealed.

05/2011 32

HOW TO’S FreeBSD & Alix

www.bsdmag.org 33

Backups are usually the lowest priority of a new
server install, but invariably, soon become an
issue when a application or system patch needs

to be applied.
Where is the tape drive? Do I have enough optical

media?
Sometimes, just a quick snapshot is that it needs, as a

fall back in case an upgrade goes awry.
Other times, you want a daily or weekly off-disk dump of

a critical server. If you have another Unix/Linux server on
the network with plenty of storage, the simple shell script
below will do the job nicely.

The beauty of this script is needs no additional
packages, as it uses only commands included with a
minimal install of FreeBSD, and few services other than
ftp and lots of storage on the target server.

The script, obviously, should not be used on an
insecure or network with limited bandwidth. What you
will need:

• Destination Server on the same LAN subnet providing
ftp services, and plenty of storage. System can run
any modern Unix/Linux OS.

• Good LAN connectivity between the source and
destination servers (preferably 100Mb/s or better and
on the same physical subnet)

• root shell access to the source server

This process will refer to source and target server. The
source server is your FreeBSD machine you wish to
backup.

The target or destination server is the machine on the
LAN with plenty of free disk space.

Target Server
Create an account on called backup with a known
password and a home directory on a filesystem with
plenty of free space. Some systems may already have a
backup account that simply needs a password set to be
usable (eg: Ubuntu).

Check the system to make sure it has a functioning
ftp server. The steps to configure the ftp service varies
between operating systems.

Make a directory called dumpfiles in the backup user’s
home directory and make sure it’s owned by the backup
account, eg:

mkdir /var/backups/dumpfiles

chown backup /var/backup/dumpfiles

It bears noting once again, make sure that the filesystem
where backup’s home directory is located, has enough
free space to hold your planned dumps of your target
machine. FreeBSD’s adduser will let you specify the
home directory when you create the account.

Backups – Made Easy

When you have to do a major Operating System or
Application upgrade, this script and server with big disks,
will get the job done.

A fast solution to a real problem

What you will learn…
• How to do server to server backups, easily and simple across a LAN
• How ftp and dump, combined, can form a powerful backup

solution

What you should know…
• How to edit simple shell scripts
• Create/modify user accounts with adduser
• How to enable ftp services (ftpd)
• Edit system �les with vi or other text editors

05/2011 32

HOW TO’S FreeBSD & Alix

www.bsdmag.org 33

Listing 1. run_backup.sh // Bourne Shell Script

#!/bin/sh

PATH=/sbin:/bin:/usr/sbin:/usr/bin:/usr/local/sbin:/usr/local/bin:/root/bin

export PATH

Simple and insecure script to do a fast dump of

specified filesystems to a remote server with storage

echo "BackMeUp"

echo "version .5"

umask 066

HOST='/bin/hostname'

BACKUPHOST="targetserver.acme.org"

BACKUPUSR=backup

BACKUPPWD=backmeup

BACKUPLOG="/tmp/backup.log"

DUMPDIR="/var/backups/dumpfiles"

DUMPFS="/ /usr"

DUMPDATE='date'

X=1

cat >> .netrc <<-EOF

machine $BACKUPHOST

 login $BACKUPUSR

 password $BACKUPPWD

 macdef init

 !rm .netrc

 pass off

 xferbuf 4000

 cd $DUMPDIR

 mkdir $HOST

 cd $HOST

 binary

EOF

for fs in $DUMPFS

do

 echo "put \"|dump 0aLf – $fs \" $HOST.$X.dump" >>.netrc

 X='expr $X + $X'

done

echo "quit" >>.netrc

echo "" >>.netrc

echo "$DUMPDATE: Backup started " >>$BACKUPLOG

ftp $BACKUPHOST

echo "$DUMPDATE: Backup Completed " >>$BACKUPLOG

05/2011 34

HOW TO’S

 DUMPDIR is the location of the dumpfiles directory in
the backup users home directory.

 DUMPFS is the list of filesystems on our source
server we want to backup/dump.

Save the following as run _ backup.sh (see Listing 1).

Some notes:

• Script is tested against FreeBSD 8 on source,
FreeBSD and Ubuntu on target.

• Change permissions on the run _ backup.sh by using
chmod 500 ./run _ backup.sh to limit read/execute to root
only.

• Move run_backup.sh to /root/bin and limit access to
~root/bin.

• The value used in the xferbuf command can be
increased substantially if your servers are on a gigabit
LAN. The value supplied works well for 100BaseT.

• Other options for dump can tune the process for
performance, like block size.

• Each filesystem will be stored in a dump file with a
number representing it’s position in the DUMPFS
variable .. ie; / is 1, /usr is 2, under a directory
named by as the hostname of your source server.

• The dump is a level 0, which includes all files on the
given filesystem.

• it is possible to do later restores over an ftp pipe,
using: ftp> get server _ name.0.dump “|restore -ivf -”

• The script could be placed in root’s cron to be run
regularly, and redirect stdout.

• The script could easily be enhanced to support
incremental support as well.

• Any unix/linux or even a Mac OSX laptop can act as a
remote target for your backup script.

Source Server
You should first test connectivity between your source
and target server, by using ftp from the command line
and your target server’s backup account credentials. Test
transferring a file to make sure permissions are correct on
the destination account, eg:

cd /usr/share/misc

ftp target_server

connected to target_server

220 target_server FTP server

Name: backup

Password: backmeup // or whatever you chose

ftp> cd dumpfiles

ftp> put birthtoken // (a known text file on BSD

If the login and file transferred successfully, then your are
ready to test the script below. The shell script is meant to
be run under root privileges, which is a requirement of
dump.

The script utilizes ftp’s .netrc command file capabilities,
which do create some potential security concerns,
and should be used only on a secure network. The
script attempts to minimize exposure of usernames
and passwords as much as possible, but you should
understand these concerns.

• It sets the umask for the user to read/write for the
user only (no other access).

• The script generates a .netrc file in the user (root)
home directory with the necessary commands to
execute dump for each filesystem specified, over a
ftp pipe.

• ftp is called with the target host, which reads in the
just created .netrc file.

• the .netrc is deleted from the local disk.
• the target host’s .netrc commands are read/

processed along with the init macro.
• A directory is created on the remote host based on

the source’s hostname.
• the actual dump commands are processed for each

of the filesystems listed in DUMPFS variable.

The script should be edited to properly reflect your
values in the variables below:

 BACKUPHOST is the target server.
 BACKUPUSR is the account we created or are using

on the target server.
 BACKUPPWD is the password for the account

above.

BILL HARRIS
has been installing and managing a variety of Unix Operating
Systems for the last 25 years in the North Texas area. He has
worked on everything from Radio Shack(c) Xenix, DEC Ultrix,
Digital Unix, FreeBSD and Linux.

On the ‘Net
• FreeBSD http://www.freebsd.org

http://www.freebsd.org

http://www.security-art.com

05/2011 36

HOW TO’S Fighting DDoS Attacks with PF

www.bsdmag.org 37

Things have changed, these attacks are now
massively distributed in order to be more efficient
and have serious goals. Anonymous and related

groups use these attacks to share political messages,
mafia from around the world use these attacks to
blackmail shopping websites. So, network administrators
need to be prepared to react as efficiently as possible
to properly mitigate these attacks. In this article, we will
explore some simple, but effective strategies you can use
to mitigate these attacks using Packet Filter (PF). Attacks
that saturate the incoming bandwidth are out of the scope
of this article, since these attacks cannot be stopped by
PF and need to be fought at the ISP level. Instead, we will
focus on attacks that saturate other network resources.

Getting the Diagnostic
In order to efficiently fight a threat, one should have the
most accurate information. The following commands will
help us gathering this information.

A good start would be to look at the different counters:

 pfctl -s info

Some values, like the total number of states in the state
table have a hard limit. PF does call this a hard limit but
nothing is hard-coded in the source code, the default limits
may be modified in pf.conf as we will see during the article.

The following command will show us these limits:

 pfctl -s memory

Since one of the most important tables is the state table,
we might want to take a look at it with the following
verbose command, which prints the full content of the
table:

 pfctl -s state

We can filter the IP addresses establishing incoming
connections by the number of established connections:

 pfctl -s state | cut -d’ ‘ -f 3 | cut -d: -f 1 | sort

| uniq -c | sort -n

Information at the PF level is not sufficient, during the
attack, you should also gather raw packets with tcpdump.
In order to quickly analyse these captures, Tshark
(available without installing the wireshark port) will help
us. For instance, to display only TCP Syn packets (high
rates can be observed during a SYN Flood attack), we
will use the following command:

 tshark -R „tcp.flags.syn==1 && tcp.flags.ack==0” -r/

path/to/capture.cap

Fighting DDoS Attacks
with PF
For a long time, Denial of Service attacks were disregarded,
as they were considered to be the work of script kiddies.

What you will learn…
• how to make advanced PF con�gurations against speci�cs

threats
• how to use third party diagnostic tools with PF

What you should know…
• how UDP/TCP connections work
• how UDP/TCP connections are working

05/2011 36

HOW TO’S Fighting DDoS Attacks with PF

www.bsdmag.org 37

The states value defines the maximum number of
simultaneous states, this is definitively the first value
to raise for fighting an attack. Default value is 10000,
but, 100000 is a good start. Using only this setting
would show you some other limits like src-nodes value
if you use sticky-address or source-track options. The
most important parameter is table-entries, this is the
global limit for all the tables used by PF. This parameter
should always be more than twice the states parameter
value, especially if you use NAT in your rules. The
frags parameter is the maximum number of packets
buffered for scrubbing. Be careful with this value. If you
are facing attacks involving extremely high numbers of
large UDP packets, it may be more efficient to disable
scrubbing.

Increasing the limits is a good approach but is not
sufficient for high-rate attacks. At this point you will have
to act more aggressively on removing remove old entries
from the state table. We will need to ask PF to purge more
often (every 2 seconds instead of the default 10 seconds)
with the following rules:

 set optimization aggressive

 set timeout interval 2

These optimizations may also be used against UDP
based attacks since PF also uses some mimics states
in order to have a record of sessions during UDP
transactions. In some cases, these counter-measures
will not be sufficient and the only remaining solution is to
force PF to become stateless, using the no state option.

 pass in quick on $ext_if proto tcp to ($ext_if) port

80 no state

Not spoofing but still flooding
Attack on services without spoofing is generally used
against TCP based protocols and let us know the real IP
addresses of the attackers. So we can use PF to individually
blacklist each IP involved in the attack. Since PF is not
able to inspect pieces of data contained in packets, the
only way to detect these attacks is by identifying IP
addresses that make a lot of requests during a small
amount of time. We will be using max-src-conn-rate and
max-src-conn options to add the offending IP addresses
to a table referenced by the overload keywords. Last but
not least, we will be able to flush every connection already
established by the offending IP addresses with the flush
option. So if we want to limit to 75 total connections per
host and only 10 new connections per 5 seconds period,
we will put these lines on our ruleset:

The following command will prove helpful when trying to
dissect HTTP packets:

 tshark -z „proto,colinfo,http.content_length,

http.content_length” -z „proto,colinfo,http.content_type,

http.content_type” -R „http.response and http.content_type

contains image” -r /path/to/capture.cap

By adapting the above commands to better fit the
particularities of each situation, it is possible to identify
the type of DDoS attack that PF is facing.

Spoofing ‘n’ Flooding
The good news is that the attacks involving source address
spoofing must remain very simple, since the attacker
is not receiving response, he is not able to establish a
complete session. The bad news is that most of the time,
these attacks create an half-open connection, which
consumes resources while waiting for the establishment
of the complete connection. This, never happens in
these attacks. The worst news is that the packets sent
during these attacks are indistinguishable from legitimate
packets, so they can’t simply be blocked.

In order to fight these threats, you first need to block as
many UDP protocols as possible. For instance, SNMP v3
is still UDP based but, should be accessed from only a
few specific IP addresses. Since there is no handshake
mechanism in UDP, each spoofed packet seems to be a
legitimate one.

In the TCP world, every connection must have
performed the three-way handshake in order to be
usable. So the only possible attack (without revealing
the offending IP address) is SYN Flood. Adding synproxy
state to all pass rules should solve the problem in most
cases, but it does not work in bridged mode which may be
problematic for many. Below is an example of a rule rule
involving synproxy:

 pass in quick on $ext_if proto tcp to ($ext_if) port

80 flags S/SA keep state

Since each SYN request is generating an half-open
connection, the state table reaches capacity very quickly
and PF starts to block incoming requests. The default
limits are very conservative and *BSD with 1GB+ RAM
available can perform very well with millions of entry
in the state table. Modifying these limits can be done
simply by adding a limit directive in the PF configuration:

 set limit { states xxxxxx, src-nodes xxxxxx, frags

xxxxxx, table-entries xxxxxx}

05/2011 38

HOW TO’S

 [Definition]

 actionstart =

 actionstop =

 actioncheck =

 actionban = pfctl -t blacklisted_host -T add <ip>

 actionunban = pfctl -t blacklisted_host -T delete `pfctl

-t blacklisted_host -T show 2>/dev/null | grep <ip>`

 [Init]

 port = http

 localhost = 127.0.0.1

We will also have to configure a filter for our custom log
file in /usr/local/etc/fail2ban/filter.d/ddos:

 failregex = T <HOST>:.* -> .*:.*

And finally configure the use of these components on
/usr/local/etc/fail2ban/jail.conf. We will ban IP addresses
that appear in the log file 20 times or more:

 [ddos-pf]

 enabled = true

 filter = ddos

 action = pf-allports[name=http, protocol=tcp]

 logpath = /path/to/offending_packets.log

 maxretry = 20

 bantime = 172800

Fail2ban will do the work for us but it is always a good
idea to look over its shoulder at the blacklist:

 pfctl -t blacklisted_host -T show

Conclusion
We have seen that a simple *BSD box with PF and few
other tools are pretty efficient when fighting DDoS attacks.
As always, the key points are to use the right tool at the
right moment and to know the capabilities and limitations
of each tool that we may have to use.

 table <blacklisted_hosts> persist

 block in quick from <blacklisted_hosts>

 pass in quick on $ext_if proto tcp to $web_server port

80 flags S/SA keep state (max-src-conn 75, max-src-conn-rate

10/5, overload <blacklisted_hosts> flush)

This approach is very efficient but may not help if each
host is performing a reasonable level of connections.
In this case, we will have to isolate the offending IP
addresses by inspecting pieces of data contained in
packets.

Depending of on the refinement of the attack, the attack
could be operating at OSI level 4 (e.g. sending non-HTTP
traffic to port 80) or level 7 (e.g. sending valid HTTP
requests). In each case, the most important is to detect
a pattern in the packet content. After having identified a
pattern, we will have to inspect each incoming packet in
order to identify offending IP addresses.

This task could be done by snort but this is a little bit over-
sized for what we need to do. In our case ngrep should be
enough. ngrep is easy to install (no configuration needed)
and will inspect packets looking for a particular regular
expression. Like tcpdump, ngrep can also use BPF filters.
Like grep, ngrep can be inverted in order to show only
non-matching packets with the -v option.

For instance, if we want to log non-HTTP traffic
incoming on TCP port 80, we will use the following
command-line:

 ngrep -q -d em0 -p -v ‘^GET .* HTTP/1.[01]’ port 80

>> offending_packets.log

Having the offending packets heading in a log file is a
good start but this is still not enough for PF. If you are
really sure of your pattern, you could use the following
set of commands in order to add the identified IP
addresses to the blacklist:

 grep „^T .*:.* -> .*:80” offending_packets.log | sed -e

„s/^T //” | sed -e „s/:.*$//” | sort | uniq | xargs pfctl

-t blacklisted_hosts -T add

This is a basic approach that works but may really be
risky and does not help us to unban IP addresses. In
order to have more control on the log file analysis We
will use fail2ban.

The fail2ban configuration is really straightforward, we
will see it in action by following our previous example.
Since the default configuration of fail2ban does not
support PF, we need to add a least these configuration
parameters to /usr/local/etc/fail2ban/action.d/pf:

MATTHIEU BOUTHORS
Matthieu Bouthors is a French *NIX enthusiast since a decade.
Working for a French hosting company, he aims �nd open source
solutions meeting the high-level requirements of its customers.

Check out our website and subscribe to Data
Center magazine’s newsletter!

Visit: http://datacentermag.com/newsletter/

Want to have all the issues of Data Center magazine?
Need to keep up with the latest IT news?
Think you’ve got what it takes to cooperate with our team?

http://datacentermag.com/newsletter/

05/2011 40

TIPS&TRICKS The MacOS X Command Line

www.bsdmag.org 41

The fact it was based on BSD was even better.
MacOS X features a command line interface that
is as authentic as any Unix interface because BSD

runs at the core of MacOS X. But Apple has provided a
number of command line tools to enhance the experience
and this article outlines the author’s favorites.

open
MacOS X provides a command line tool to open
applications and files. MacOS X applications are actually
collections of files residing within one directory with a
name ending in .app. I usually use open at the command
line to start most applications, leaving the Dock clear of
applications not running:

 howardjp@thermopylae:~$ open /Applications/Safari.app

is enough to start Safari and if the browser is already
running, it will open a new window. The open command
also works on individual files and will open the file in its
associated application. For instance, running open on a
PDF will open the file in Preview. And running open on a
normal directory (as opposed to an application package) will
open the directory in Finder. The open command provides
a number of useful options. The option -t treats the file,
regardless of type, as a text file and opens it in the default
text editor. A related option, -e simplifies the process and

opens the file in TextEdit, the native text editor provided with
MacOS X. Also related is -f, which reads from the standard
input and passes the input to the default text editor.

It is also possible to override the default application with
other types of files using the option -a. But it is important to
remember the full path to the application must be given:

open -a /Applications/Adobe\ Reader\ 9/Adobe\

Reader.app/foo.pdf

This form is quite cumbersome, but it may be appropriate
in some circumstances. One last option worth mentioning
is -R which find the references file in Finder, instead of
opening the file itself. Finally, the open also supports URLs:

 open http://www.jameshoward.us

will open my website directly in the default browser.

pbcopy and pbpaste
The Unix command line has historically interacted poorly with
the numerous graphical interfaces that have been stacked
upon it. One key area lacking support is the clipboard.
MacOS X brings two utilities to close that gap, pbcopy and
pbpaste. These commands together provide complete access
to the MacOS X clipboard (which Apple calls the pasteboard,
explaining the names of these two commands). The first of

The MacOS X Command
Line
My wife thinks I bought my Mac laptop to use as a status
symbol. But every hacker knows I bought it because I
wanted a decent Unix laptop.

What you will learn…
• Apple-speci�c command line tools
• Opening most �les
• Working with the clipboard
• Taking screen shots

What you should know…
• The Unix Command line
• How to get around MacOS X

05/2011 40

TIPS&TRICKS The MacOS X Command Line

www.bsdmag.org 41

binhex and macbinary
If you have been a Macintosh user since before MacOS X,
then you may have a collection of files stored in some of
Apple’s unique formats, such as BinHex or MacBinary. Apple
has provided a command line tool for creating and converting
these file formats. Prior to adopting the Unix-like structure of
MacOS X, Apple used a proprietary disk format called HFS
(an extended version called HFS Plus was also available).
This disk format broke files into multiple components
called forks. There were normally two forks with the first
being traditional data. The second, called the resource fork
included metadata applicable to the file, such as associated
applications or icons. To simplify transfer of these files, the
MacBinary format was created, that combined the forks of a
file into a single package suitable for transport. They typically
had a file name ending in .bin or .macbin. Apple provides
macbinary for working with these types of files. The macbinary
command takes a subcommand as its first option. Available
subcommands are encode, which creates a new MacBinary
file, decode which unpackages an existing MacBinary file,
and probe which attempts to determine if the files listed are
MacBinary files. Similar to MacBinary is that the BinHex
format packages the different forks of an HFS-based file into
one file, but also makes that file 7-bit clean for transferring
over ASCII connections, such as email. This is similar to the
use of uuencode on the Unix platform. These files typically
had the extension .hqx. Apple also provides binhex to work
with these files and it takes the same options as macbinary.
Both commands take several options, but the most useful is
-c which makes the two commands read from the standard
input for decode and write to the standard output for encode.

Other Tools
The traditional Unix command uname is available for interested
users, but Apple has provided a second command for
MacOS X specific information. That command, sw_vers, will
provide the product name (distinguishing between MacOS
X and MacOS X Server), the operating system version,
and the build number. In addition, there are a collection of
utilities for accessing XCode, the native IDE for MacOS X,
package building, and other developer tools. These were
not including in this overview due to their technical nature,
but they are useful to understand Apple has considered
the needs of programmers when deviating from common
practice in the Unix world.

the two, pbcopy, takes its input from the standard input and
adds it to the system clipboard. The command only accepts
one option, -pboard, which accepts one of four suboptions,
general’, ruler, find, and font, all of which are different system
clipboards available on MacOS X. The general pasteboard
is the main system clipboard and the others are for special
use. The pbpaste pulls data from the clipboard and prints it to
the standard output. Like pbcopy, pbpaste accepts the option
\opt{pboard} to determine which pasteboard to acquire data
from. The pbpaste command adds a second option, -Prefer
which takes three possible options txt, rtf, and ps. These
options direct pbpaste to looks for a certain type of formatted
information on the pasteboard. The txt flag suggests
standard text data. The rtf and ps suggest Rich Text Format
and PostScript, respectively. Despite this option, it is not
possible to direct the exact output pbpaste prints. This option
only tells pbpaste what type of information to return first.
These two commands offer the MacOS X command line
warrior a simple and fairly complete set of tools for working
with and manipulating the Mac OS X pasteboards.

Screencapture
Another command line gem in MacOS X is a screen
capturing program called screencapture. This command
line application accepts a handful of options making
the tool quite powerful. The program requires a single
command line option, a file name to store the screen
capture in. Without any other options, this will copy the full
screen to the named file, which is stored in PNG format
by default. The file format can be changed with the option
-t which accepts pdf, jpg, and tiff as acceptable formats.
The manual page suggests other formats are permissible.
Experimentally, gif works and ps does not. The option -
w instructs screencapture to only capture a single window
and highlights the current window. Moving the mouse will
allow the user to select a different window for capture. The
-o option forces screencapture to ignore the shadow when
capturing a single window. Like other screen capture
utilities, screencapture allows the user to select a delay
before taking the image with the T option, which accepts a
number as the number of seconds to wait. The screencapture
command provides other useful options. When the screen
is captured with this utility, it triggers a sound like camera
shutter opening and closing to signal the capture has
been taken. This can be disabled, probably for nefarious
purposes, using the -x option. Also when using the option
-P, the utility will automatically open the saved image file in
the Preview.app application. The screencapture command
provides other options for controlling how a window can
be selected and also for opening the screen capture in a
new Mail.app message.

JAMES P. HOWARD, II
The author is a senior analyst in Washington, DC, in the United
States where he focuses on statistical and mathematical
systems. He can be reached at jh@jameshoward.us or via
Twitter @howardjp.

05/2011 42

TIPS&TRICKS Implementing OpenSMTPD

www.bsdmag.org 43

This document describes running an instance of the
mail transfer agent OpenSMTPD which is included
as a component of OpenBSD systems and can run

as an alternative to the Sendmail internetworking Simple
Mail service.

To implement this example, a working installation of
OpenBSD is required.

Read the manual pages to make configurations specific
to your network (see Listing 1).

This document does not describe certificate creation,
the concept has been simplified to a case of sending e-
mail relayed through a centralized server. The centralized
server requires only a user and a password; e.g., a service
provider which filters by network and the like.

The network topology used in this example is a network
gateway that has two static addresses configured at a local
ethernet interface and a local mail server with example.org
as the domain. Eventually we will migrate to IPv6.

This example mail system configuration has alpine
as the message user agent and procmail is the mail
delivery agent. Bogofilter and spamd are implemented
to prune e-mail. Procmail and bogofilter are presented
with very simple configurations- the purpose of the basic
configuration examples is that they run alright. If you want
to, create recipes to enhance your specific network.

The gateway will be restarted following it's configuration-
run pfctl -nf /etc/pf.conf before rebooting.

Gateway Configuration
Spamd is a component of OpenBSD, use the supplied
scripts to make it run at startup.

Implementing OpenSMTPD

OpenSMTPD is one of the mail servers included with
OpenBSD. Configuring OpenSMTPD is more readily
understood and comparatively less complex than
configuring Sendmail.

An Independent Reference Document

What you will learn…
• How to prepare a gateway for network mail
• How to con�gure OpenSMTPD
• How to con�gure mail �ltering

What you should know…
• Basics of OpenBSD
• General local-area network concepts

Listing 1. Pertinent OpenBSD Manual Pages

$ man 1 bogofilter

$ man 1 procmail

$ man 5 hostname.if

$ man 5 mailer.conf

$ man 5 pf.conf

$ man 8 newaliases

$ man 8 newsyslog

$ man 1 pkg_add

$ man 8 rc.conf

$ man 8 smtpctl

$ man 8 smtpd

$ man 5 smtpd.conf

$ man 8 spamd

$ man 5 spamd.conf

$ man 8 spamd-setup

$ man 8 spamdb

$ man 8 spamlogd

$ man 5 syslog.conf

05/2011 42

TIPS&TRICKS Implementing OpenSMTPD

www.bsdmag.org 43

#* ^TO_.*

#/var/mail/your_user_account

#your_user_account

Before the change from sendmail to smtpd, ensure the
mail queue is empty.

sendmail -bp

Stop sendmail.

pkill sendmail

Make changes to the mail wrapper.

vi /etc/mailer.conf

 sendmail /usr/sbin/smtpctl

 send-mail /usr/sbin/smtpctl

 makemap /usr/libexec/smtpd/makemap

 newaliases /usr/libexec/smtpd/makemap

vi /etc/rc.conf.local

 sendmail_flags=NO

 smtpd_flags=

Edit /etc/mail/aliases and run the newaliases command.
Maps can be named freely, here bigD is used. So edit /

etc/mail/bigD; e.g.,

your_alias: your_user_account

vi /etc/rc.conf.local

spamd_flags="-v -5 -G 10:4:864 -l 192.0.2.13"

Spamd is served with alias.

vi /etc/hostname.internal_interface

inet alias 192.0.2.13 subnet_mask broadcast_address

Synproxy state, configurable at packet filter, can prevent
SYN-flood attacks – here are the pertinent pf.conf lines:
see Listing 1

Configure spamd.conf per your preferences. Examples
are provided in the sample configuration file in the /etc/
mail directory. Next, make spamd run from crontab:

crontab -e -u root

31 0-31/4 * * * /usr/libexec/spamd-setup

Set a spamtrap for mail arriving to anything other than
example.org.

vi /etc/mail/spamd.alloweddomains

example.org

The log files can be modified for easy reading.

touch /var/log/spamd

touch /var/log/spamlogd

vi /etc/syslog.conf

!spamd

daemon.err;daemon.warn;daemon.info /var/log/spamd

!spamlogd

daemon.debug /var/log/spamlogd

Now you can check for interesting entries in your log files
(see Listing 3).

Consider changing newsyslog.conf per your environment.
Let us reboot the gateway.

shutdown -h now

Mail Server Configuration
Add the packages alpine, procmail, and bogofilter to the
mail server. Bogofilter for this example only succeeds or
exits. Procmail can be specific to your user account:

$ cat .procmailrc

:0fw

| bogofilter

#!-- where the mail is going, per procmail:

#:0

Listing 2. Packet Filter Modi�cation

mail_server = "192.0.2.9"

spamd_proxy = "192.0.2.13"

table <spamd-white> persist

table <spamd-greytrap> persist

match in on egress inet proto tcp from !<spamd-white>

to \

 $mail_server port 25 rdr-to $spamd_proxy port spamd

pass out quick on egress inet proto tcp to any port

smtp modulate

 state

pass in log on egress inet proto tcp from any to

$spamd_proxy port

 spamd modulate state

pass in log on egress inet proto tcp from <spamd-white>

to \

 $mail_server port smtp synproxy state

http://example.org

05/2011 44

TIPS&TRICKS

Implement the map in your files.

makemap -t aliases -o /etc/mail/bigD.db /etc/mail/bigD

chmod 640 /etc/mail/bigD.db /etc/mail/bigD

chgrp _smtpd /etc/mail/bigD.db /etc/mail/bigD

Configure OpenSMTPD.

vi /etc/mail/smtpd.conf

mail_if = "your_networkCard"

listen on $mail_if

map "aliases" { source db "/etc/mail/aliases.db" }

map "bigD" { source db "/etc/mail/bigD.db" }

accept for local alias aliases deliver to mbox

accept from all for domain "example.org" alias "bigD" \

 deliver to mda "procmail -f -"

accept for all relay via "smtp.centralServer.com"

Check smtpd.conf for validity.

smtpd -n

Start the daemon.

smtpd

To stop, and start anew:

pgrep smtpd

pkill smtpd

pgrep smtpd

DARREL LEVITCH
Darrel resides in Lyndon, Kentucky, USA and designs networks.
He enjoys modifying existing infrastructure with features found
in Berkeley Software Distributions and installed on commodity
hardware or in virtual environments.

If things are convenient, consider a restart of the mail
server. Check the result.

cat /var/log/maillog

or:

gzcat /var/log/maillog.0.gz | grep smtpd

and:

smtpctl sh s

Invoke the telnet command to ensure that connections
are successful.

$ telnet

telnet> open mail.example.org 25

telnet> close

Have fun! For topics not covered here or if this
implementation was not clear to you, perhaps the
OpenBSD misc list has some helpful archives.

Listing 3. Log File Samples

$ cat /var/log/spamlogd

Apr 18 10:13:46 gate spamlogd[15106]: outbound [centralServer.com]

Apr 20 15:40:17 gate spamlogd[3531]: inbound 80.13.214.150

Apr 23 12:55:21 gate spamlogd[3531]: inbound 175.180.69.7

$ cat /var/log/spamd

Apr 17 23:54:45 gate spamd[23239]: listening for incoming connections.

Apr 17 23:54:45 gate spamd[17488]: got suffix example.org

Apr 20 15:40:17 gate spamd[23239]: 80.13.214.150: connected (1/0)

Apr 20 15:40:30 gate spamd[23239]: (GREY) 80.13.214.150: \

 <hotmabox@yahoo.com> -> <hotmabox@yahoo.com>

Apr 20 15:40:30 gate spamd[23239]: 80.13.214.150: disconnected after \

 13 seconds.

Apr 23 12:55:21 gate spamd[23239]: 175.180.69.7: connected (1/0)

Apr 23 12:55:33 gate spamd[23239]: (GREY) 175.180.69.7: <gigi.wu@gmail.com> \

 -> <vbibiorm@gmail.com>

Apr 23 12:55:33 gate spamd[23239]: 175.180.69.7: disconnected after \

 12 seconds.

http://hakin9.org/en

05/2011 46

LET’S TALK

Last week I was talking to my Linux-user friends,
and gradually the conversation shifted to GPL v/s
BSD licensing. The conversation was a short one

indeed, and I suppose BSD users might be interested in
what I had put forth.

What makes an open source project a success story?
Of course, it has to fulfil a need, but apart from that, it
must attract users. Secondly, it should have the ability to
attract and retain developers as well. You might wonder:
users, yes they are needed. But why should it attract
developers? Naturally, the more developers a project
has, the more work gets done! Yet, that shouldn’t concern
us. The point to be noted is how those developers’
contributions are treated. As a general rule, most open
source projects let developers retain the copyright to
their respective works. Simply put, this means that if
someone wishes to purchase the copyrights of a given
project, then all the concerned developers will have to
agree. There are no alternatives in such a scenario
– even if one of the developers refuses, the copyright
purchase cannot be completed.

Seems simple enough so far? Well, visualize a fairly
large open source project, that has many people who
have made (or are making) substantial contributions in
one or the other. Needless to add, acquiring copyrights of
such a project will be next to impossible. Need examples?
Good ol’ Linux. Correction, it’s GNU/Linux. The copyrights

are distributed among so many people that even Linux
developers have lost count.

Still not convinced? Try MySQL, a product wherein the
creators did not allow contributions unless the copyrights
were assigned to them. The bottom-line read that a
MySQL contribution was a mere question of the number
of dollars needed to swallow it up. Again, just another
drawback of the GPL.

So let us get back to the question of what makes
an open source project a success story? True, your
next door economist will reply that your clients must
be satisfied with your work, because if you have one
satisfied customer, you’re likely to have more. As they
say, if you cannot sell it, you can’t give it for free either
as no one would take it!

But economics lessons apart, we, as open source
enthusiasts, know that an open source project is as good
as its license. Unless the license offers the users full
freedom, the chances of success are limited. Once again,
if you need some examples, allow me to cite PostgreSQL
and Python – both licensed under the BSD license. And
both of them are going strong.

So coming back to the question, what makes an open
source project a success story? Truth is, it’s the proper
licensing. Unless you give your users the freedom they
are seeking, you will not be able to make a mark, at least
as an open source entity.

License Wars!
When I sat down to brainstorm on this month’s article, I decided
to write about something out of the ordinary. Obviously, the
topic had to be related to BSD, yet, I was determined to touch
upon something that is a bit above than just being ‘geeky’. Why?
Simply to make BSD fanatics proud, and at the same time show
non-BSD fans how great the world of BSD is!

What you will learn…
• Why BSD License beats GPL, in simple terms!

What you should know…
• Details of BSD License and GPL

License Wars!

Now, before taking leave, let me disclaim. I admit I am
not a lawyer. But the above description definitely is not
technical (and it wasn’t meant to be technical, either).
While I believe most of us would agree that the BSD
licence eats GPL for lunch, there might be a few who’d
think otherwise. If you’re one among them, feel free to
share your views with us!

To finish up, let us look at Django, a Python-based Web
framework, first released in mid-2005. It was developed
as a framework for a news site for the LJ World Journal
by Adrian Holovaty and Jacob Kaplan-Moss, and others.
But its popularity soared exponentially once they open
sourced it. How? It was given a BSD license (don’t blink,
you read that right). Currently, Django has its code in an
open repository, backed by a publicly accessible wiki,
separate mailing lists for users and developers and an
IRC Channel.

And so, Django today is not only the most popular
Python based Web framework but also one of the most
well known adherents of BSD license. The success of
Django shows that the BSD license is the way to go!

With that said, allow me to sum it up for you. The bottom-
line is that the BSD-style licence, though not free from its
share of technicalities, is yet to encounter a violation,
while GPL has had numerous violations thus far. To put it
the other way, using a permissive BSD licence, you can
ensure you get a tension-free sleep.

The reason for the same is that BSD licence is practically
public domain, and it does not speak in extinct languages.
Here, FREE means FREE-as-in-real-life, period.

SUFYAN BIN UZAYR
Sufyan is a 20-year old freelance writer, graphic artist,
programmer and photographer based in India. He writes for
several print magazines as well as technology blogs. He is also the
Founder and Editor-in-Chief at http://www.bravenewworld.co.nr
He can be reached at http://www.sufyan.co.nr

a d v e r t i s e m e n t

http://www.bravenewworld.co.nr
http://www.sufyan.co.nr
http://www.rootbsd.net

05/2011 48

IN BUSINESS Allocating Dynamic Memory with Confidence

www.bsdmag.org 49

A device with a dedicated function is expected to
perform that function consistently, no matter how
complex the task is at the software level.

Users will put up with occasional slowdowns and
crashes on a desktop computer, but devices are held
to a higher standard, especially when they are part of a
mission-critical system. Memory allocation is an important
factor for providing the necessary performance and
reliability on an embedded device.

On a general-purpose computer, well-designed
applications allocate memory on-demand, so that each
application only uses as much memory as it needs at
any given time. If an application needs a large amount
of memory, the user is expected to stop using other
applications until it is finished.

Embedded devices are typically designed to perform
a fixed set of tasks. The user may not even realize
that there are anything like applications running on a
device. Devices that do not support demand-paging will
simply fail when memory is full. Even an unexpected
drop in performance can be frustrating, and in some
cases dangerous. For that reason, well-designed
applications on embedded systems often preallocate
memory so that performance is consistent and failure
is prevented.

However, for complex applications it is not always
possible to predict all memory requirements in advance.

Instead, the application can be analyzed to determine its
worst-case memory consumption and allocate a buffer
of that size in advance. Such analysis can be difficult,
especially when starting from scratch.

Storing, organizing, and sharing data makes up a large
part of the memory requirements for an application.
A device application can use an embedded database
library to manage memory more effectively, by both
imposing bounds on memory usage and analyzing worst-
case behavior in a consistent way. The database library
can handle all the details of reading, writing, indexing,
and locking data within a predictable footprint, so that
the application’s own memory requirements are greatly
reduced.

Designing for Predictable Memory Usage
Reliable embedded devices depend on predictable
behavior. For memory allocation, this requires knowing how
much memory an application will need in the worst case,
and then finding ways to reduce that amount. To do this,
an application developer needs to follow a good memory
allocation strategy, measure memory consumption under
a variety of representative configurations, and analyze the
results.

Total memory consumption includes not only the
memory requested by the application, but also the
overhead of the dynamic memory allocator itself. Some

Allocating Dynamic
Memory with Confidence
Embedded software applications face many challenges that
are not present on desktop computers.

What you will learn…
• How to analyze worst-case memory footprint of an application
• Characteristics to look for in a memory allocator
• How to bene�t from dynamic allocation without risking out-of-

memory errors

What you should know…
• Basic C / C++ skills and how to allocate / free memory

05/2011 48

IN BUSINESS Allocating Dynamic Memory with Confidence

www.bsdmag.org 49

memory allocated at any one time and the size of the
single largest allocation, including allocator overhead.
Other statistics may also be valuable for certain memory
allocators.

The amount of memory used by an application
usually depends on how it is configured and how it is
used. Statistics should be collected for several different
configurations that represent all of the extreme memory
use cases. The application should also be divided into
discrete operations that can be tested individually, so that
results can be calculated without simulating all possible
combinations.

By knowing an application’s total memory consumption,
it is possible to allocate a large enough memory pool
when an application is started to satisfy all allocation
requests for the life of the application. Provided that
operations run sequentially, one by one, the memory
consumption is defined as the largest consumption of
any individual operation. If operations could overlap, the
maximum memory consumption is defined as a sum of all
the operations that could be run concurrently.

Managing Memory Effectively with ITTIA DB
ITTIA DB SQL is an embedded database library that is
specifically designed for devices and embedded systems.
For example, memory allocation in ITTIA DB SQL follows
the two-phase principle, so that memory requirements are
consistent and predictable.

allocators are more susceptible to fragmentation than
others, so it is important to know what kind of allocator
the application is using. Most operating systems
use a general-purpose allocator that performs well
on average, but that may badly fragment memory
at unexpected times. On such platforms, a bounded
allocator can be used in each application to limit
allocation overhead.

Memory Allocation Strategy
A useful strategy to avoid memory fragmentation is two-
phase allocation. Under this strategy, large and long-term
object are allocated first so that they are guaranteed
a place in memory. Small and short-lived objects are
allocated in the second phase because they are less likely
to fail even if memory is fragmented. In this way, there
is little risk that an allocation will fail merely because no
contiguous region of memory is large enough.

Both the application code itself and any libraries that
allocate memory should apply this strategy. Otherwise,
the worst-case behavior of the application cannot be
predicted accurately. Even a bounded allocator cannot
provide any guarantees if an embedded library only
imposes soft limits on its allocation behavior.

Statistics Collection and Analysis
When measuring memory allocation behavior, the most
important statistics to collect are the largest amount of

Figure 1. Memory model for ITTIA DB embedded database

��������
�����

���

��������
���

�������
�����

������������

���������

������������� �����������

������� ����

�������������� ���� �����������

����� ���������

05/2011 50

IN BUSINESS

ITTIA DB SQL also includes a built-in allocator that can be
enabled to restrict all database allocations to preallocated
segments of memory. The built-in memory allocator has
proven limits on memory fragmentation overhead, and
provides statistics so that worst-case behavior can be
measured for each database-driven application.

Other statistics can also be collected, such as the
number of database resource handles opened by the
application and the number of locks used to provide safe,
efficient shared access. These provide additional insight
into application behavior, which can be used to reduce the
memory footprint.

Use Case: Weigh Station
At a weigh station, trucks are moved onto a large scale
and the measurement is collected, stored, and later
transferred to a back-end system. A device is used to read
sensor data from the scale and associate weights with
trucks. Trucks can be grouped together into a train, so
that data is not sent to the back-end system until an entire
train is complete.

In this scenario, an embedded database can be used
to log sensor readings continuously in one thread while
trucks are identified and synchronized with the back-
end system in another thread. The application code only
needs to operate on one truck and one sensor reading
at a time, so dynamic memory allocation can be avoided
everywhere except in the database itself. In this way,
analyzing the dynamic memory consumption of the
database is sufficient to determine the requirements of the
entire application.

To determine the amount of memory used by the
database, consumption is measured sequentially for three
separate operations: opening database connections,
capture of scale measurements, and truck data entry and
transfer. The memory consumption for the application is
the total for these three operations, since the measurement
and truck threads can be run concurrently.

When the simulation is run under various workloads,
memory consumption is stable no matter how many trucks
are weighed or measurements captured. The largest

allocations are performed during start-up by opening the
database connections and cursors. The measurement
and weigh/sync threads contribute very little to the
memory footprint. Statistics for both actual memory usage
and the upper bound on estimated memory consumption
are captured from the built-in memory allocator in ITTIA
DB SQL (Table 1).

Conclusion
Memory allocation behavior can have a significant impact
on the performance and reliability of an embedded device.
Extreme measures such allocating all memory statically at
compile-time are extremely restrictive, and not necessary
if developers are willing to apply some analysis. For
software libraries where the worst-case behavior is not
clearly defined, applications can run out of memory
unexpectedly even with a bounded memory allocator.
An embedded database that provides robust memory
management features, like ITTIA DB SQL, can be used to
limit and analyze the most dynamic allocations in a device
application.

RYAN PHILLIPS
Ryan Phillips is a Lead Engineer at ITTIA with special focus in
embedded systems and database technologies. He has over a
decade of software development experience.

Table 1. Actual memory consumption and worst-case estimate calculations

Workload Statistics Static Overhead Measurements Weigh and Sync Total
100 Actual 186kB 5kB 2kB 193kB

Estimate 579kB 5kB 2kB 586kB

1,000 Actual 186kB 5kB 2kB 193kB

Estimate 579kB 5kB 2kB 586kB

100,000 Actual 186kB 5kB 2kB 193kB

Estimate 579kB 5kB 2kB 586kB

Next issue is coming in
June!

In the next issue:

- BSD Certification
- FreeBSD and LDAP
- and Other !

http://bsdmag.org

http://www.iXsystems.com

	Cover

	Here it is!
	Contents
	Introduction to the
Z Shell
	Supporting Multiple
Desktops in PC-BSD 9.0
	DragonFly News
	Evolution ofan Open
BSD Port
	FreeBSD & Alix A pint sized install of an Enterprise OS

	Mono (C# and the .NET Framework) on FreeBSD

	Drupal on FreeBSD part 6

	Backups – Made Easy A fast solution to a real problem

	Fighting DDoS Attacks
with PF
	The MacOS X Command
Line
	Implementing OpenSMTPD An Independent Reference Document

	License Wars!
	Allocating Dynamic
Memory with Confidence

